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"All models are wrong but some are useful" (Box, 1979)



Abstract

This thesis presents the application of data science techniques, especially machine

learning, for the development of seismic damage and loss prediction models for

residential buildings. Current post-earthquake building damage evaluation forms are

developed for a particular country in mind. The lack of consistency hinders the

comparison of building damage between different regions. A new paper form has been

developed to address the need for a global universal methodology for post-earthquake

building damage assessment. The form was successfully trialled in the street ‘La Morena’

in Mexico City following the 2017 Puebla earthquake.

Aside from developing a framework for better input data for performance based

earthquake engineering, this project also extended current techniques to derive

insights from post-earthquake observations. Machine learning (ML) was applied to

seismic damage data of residential buildings in Mexico City following the 2017

Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake

sequence (CES). The experience showcased that it is readily possible to develop

empirical data only driven models that can successfully identify key damage drivers and

hidden underlying correlations without prior engineering knowledge. With adequate

maintenance, such models have the potential to be rapidly and easily updated to allow

improved damage and loss prediction accuracy and greater ability for models to be

generalised.

For ML models developed for the key events of the CES, the model trained using

data from the 22 February 2011 event generalised the best for loss prediction. This is

thought to be because of the large number of instances available for this event and the

relatively limited class imbalance between the categories of the target attribute. For the

CES, ML highlighted the importance of peak ground acceleration (PGA), building age,
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building size, liquefaction occurrence, and soil conditions as main factors which affected

the losses in residential buildings in Christchurch. ML also highlighted the influence of

liquefaction on the buildings losses related to the 22 February 2011 event.

Further to the ML model development, the application of post-hoc methodologies

was shown to be an effective way to derive insights for ML algorithms that are not

intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’

ML models.



Acknowledgements

I would like to express my deepest gratitude to the Earthquake Commission (EQC),

especially Geoffrey Spurr. I extend my recognition to RiskScape and Ryan Paulik. This

research project would not have been possible without their technical support.

Countless people supported me along my PhD journey, within the good times as well

as the challenging one. I would like to acknowledge some people in particular.

I would like to express my deepest gratitude to the Earthquake Commission (EQC),

especially Geoffrey Spurr. I extend my recognition to RiskScape and Ryan Paulik. This

research project would not have been possible without their technical support.

Countless people supported me along my PhD journey, during the good times as well

as the challenging ones. I would like to acknowledge some people in particular.

First and foremost, I would like to express my deepest gratitude to my supervisor

Dr Quincy Ma. Your guidance, constructive feedback and thoughtful insights facilitated

my transition from a wide-eyed graduate student to an independent researcher. Thank

you for your patience, endless encouragement, and for granting me the freedom to be a

curious researcher and devote time to explore new areas.

I would like to express special thanks to Dr Joerg Wicker for generously providing

me with technical advice related to the computer science aspects of my research. Your

advice and insights gave me the confidence to explore, learn, and publish in the computer

science domain. Your trust and assistance will always be remembered.

I am indebted to Associate Professor Liam Wotherspoon. Your support and help made

my journey a lot easier. Your invaluable assistance enabled me to meet professionals that

contributed to my research. I extend my gratitude to Dr Sjoerd Van Ballegooy who made

time available to provide me with insightful insights.

v



vi

I am sincerely grateful to my advisor Professor Ken Elwood. Your support before the

start of my PhD and assistance during my provisional year were key to the success of my

PhD journey. Your expert knowledge, enthusiasm, and passion combined with sagacity,

wisdom, and humility made me self-reflect on what it is to be an outstanding researcher.

I was honored to be at your side during the reconnaissance mission following the 2017

Puebla earthquake. Your advice and insightful comments all participated in my growth

as a young researcher.

I would like to thank Professors Rajesh Dhakal, Hugon Juarez-Garcia, and Alonso

Gomez-Bernal for allowing me to collaborate with you and your students working on

damage assessment in Mexico. I also would like to recognise the invaluable technical

assistance of Professor Amador Terán Gilmore.

I would like to pay my special regards to Pavan Chigullapally, Sunil Nataraj, and

Eyitayo Ademola Opabola. Besides being great colleagues, you have been exceptional

friends and mentors. Your selfless help, technical, and mental support surely made my

research seem a lot easier. I will always appreciate the numerous discussion around PhD

and life as young researchers. I hope that we will always be available for each other and

be willing to discuss science.

I am thankful to Amelia Lin. It was a pleasure to be a student rep with you. In

addition, your help and advice enabled me to overcome and move forward again

whenever my research hit GIS-related hurdles. I would like to acknowledge the help

of Diego Ivan Hernandez Hernandez. Your expertise and insights in Mexico’s seismicity

were of invaluable help. Moreover the numerous events and activities you invited me to,

kept me sane during the past four years. I am thankful for the support and discussions

with Matt Cutfield. Your selfless assistance at the beginning of my PhD enabled me to

get a smoother start in my research journey. I wish to extend my thanks to Kai Marder,

Tongyue Zhang, Frank Bueker, Mehdi Sarrafzadeh, Rijalul Fikri, Harish Shivaramu,

Rahul Kadam, Haozhi Tan, Ronald Gultom, Mehrdad Bisadi.

Special thanks to the Professors and friends from the UoA Machine Learning Group.

The weekly meetings were a great opportunity to be exposed to current research

in the field of machine learning. Additionally, your help and insights contributed to

the successful application of machine learning for my research project. Thank you to



vii

Professor Amador Terán-Gilmore and Professor Andreas Maurial. Your help extended

beyond my master studies. I am grateful for your unwavering support.

Thank you to my flatmates Long Qi Yu, James Opie, and Timothy Christopher. You

have been present for me, extremely understanding and supportive within the good

times as well as the most challenging one. Thank you to my friend in New Zealand
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CHAPTER 1
Introduction

1.1 Motivation

In 2010-2011, New Zealand experienced the costliest earthquakes in its history. The

Canterbury earthquake sequence (CES) began on 4 September 2010 with the Mw 7.1

Darfield earthquake and it continued with more than 3,500 aftershocks, including major

shaking events on 22 February 2011, 13 June 2011 and 23 December 2011 (Potter et al.,

2015). The CES induced unprecedented and widespread damage in the Christchurch

built environment, devastating many commercial buildings in the central business

district (CBD) and residential houses in wider Christchurch. The CES led to a direct

economic loss evaluated at 20% of New Zealand’s GDP in 2011 (King et al., 2014). The

losses far exceeded any previous model prediction (Feltham, 2011), prompting a rethink

on seismic loss prediction models for New Zealand.

On the 19th September 2017, on the exact 28th anniversary of the 1985 Michoacán

earthquake, a Mw 7.1 earthquake occurred 120 km southeast of Mexico City. The 2017

Puebla earthquake induced significant damage to structures located in the Mexico City

urban area, led to the collapse of 46 buildings and 370 fatalities. These seismic damage

and losses to the built environment emphasised the need for improved disaster risk

reduction. Accurate seismic damage and loss prediction can improve efficient resources

allocation to increase the seismic resilience of cities and communities.

Since 2000’s, research efforts focused on performance based seismic engineering

of buildings (Federal Emergency Management Agency (FEMA), 1997; Poland et al.,
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1995). The Pacific Earthquake Engineering Research (PEER) Center further framed the

Performance-based earthquake engineering (PBEE) methodology (Porter, 2003). First

implementations of the PBEE methodology defined the building performance in terms

of discrete performance levels (i.e. fully operational, operational, life-safe, and near

collapse) linked to specific earthquake intensity levels. The definition of the building

performance then evolved to be expressed via quantitative metrics (e.g. casualties, repair

cost, repair time, environmental impacts, and unsafe placarding), which are usable

by structural engineers as well as other stakeholders and decision-makers (Federal

Emergency Management Agency (FEMA), 2018).

The PBEE takes into account uncertainties and thus treats performance

probabilistically. This includes the use of performance functions, fragility and

vulnerability functions, that communicate the probability of non-exceedance for a

given impact quantity. Such functions are developed upon analytical data, expert

opinion, and in some cases empirical data (Porter, 2020). Empirical observation

data from actual events is highly valued as it comes from the direct inspection of

buildings subjected to earthquakes and thus reflects actual achieved performance. In

recent years, reconnaissance missions following earthquake events provided valuable

perishable information related to building damage. The analysis of the damage data

provides a better understanding of building performance pointing out causes of

building failure and highlighting deficiencies in previous and current construction

practice. The knowledge gained through the analysis of empirical damage data analysis

enables the development of damage prediction tools that improve future building

damage assessment and seismic risk mitigation. Perhaps owing to the historic lack

of post-earthquake building performance data, current loss estimation tools primarily

follow a probabilistic causation-based approach rather than an actuarial approach as

it is common for non-natural perils. A central concept of this probabilistic-causation

approach is represented by the PEER triple integral for calculating expected loss (Porter,

2003), as shown in Equation 1.1 below.

P(DV) =
∫ ∫ ∫

G(DV|DM)dG(DM|EDP)dG(EDP|IM)|dλ(IM)| (1.1)
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It is often a complex and time-consuming process to adopt new event observations

to update fragility and vulnerability models in the probabilistic causation framework.

Significant effort is required to prepare and interpret the empirical post-earthquake

building assessment data. There are often sampling bias on damaged structures,

inconsistencies and individual subjectivity due to the collection technique and the

assessment form employed. There are also further problems capturing sufficiently

detailed data to account for regional nuance and local building practices. Localised

assessment form capture more detailed results but hamper a comparison between

damage data collected from different regions of the world.

The analysis of empirical damage data also requires significant time, leading to a

gap of several years between the data collection and new insights being implemented in

updated damage and loss models. For example, the new damage probability matrices for

Greece were published nine years following the 1999 Athens earthquake (Eleftheriadou

& Karabinis, 2008), empirical fragility curves for reinforced concrete (RC) buildings were

published seven years after the 2009 L’Aquila earthquake (Del Gaudio et al., 2016).

Lastly, damage and loss prediction models are important tools for governments,

insurers, and engineers. They facilitate the planning and prioritisation of earthquake

risk mitigation projects and the selection of risk financing options. Due to the many

engineering, social and economical input to these models, it is often difficult to identify

the key building parameters attributing to the most damage. A technique to understand

the influence of each model parameter on the final outputs would enable more informed

decisions.

It is the aforementioned challenges combined with the unrealised potential of

empirical data collected following earthquake events that motivated this study, to apply

data science techniques to the analysis of empirical post-earthquake damage and loss

data. Kovačević et al. (2018) highlighted the potential for machine learning (ML) to allow

for more flexible and more rapid earthquake loss assessment of residential buildings.
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1.2 Objectives

Main objectives

• To improve the framework for post-earthquake damage data collection

• To develop a machine learning model for the seismic damage and loss

prediction for residential buildings

• To develop a process to rapidly and accurately identify key building

parameters contributing to seismic damage and loss

The first objective of this study is to improve the framework for collecting building

damage data following earthquake events. The aim is to develop a building evaluation

form that is general enough to compare building damage data across the world while

providing sufficient flexibility to account for local construction nuances.

The second objective is to use empirical data to develop models for the seismic

damage and loss prediction in residential buildings. Specifically, the following

sub-objectives are to be addressed: collect post-event building evaluations (damage

and loss data), obtain information on the seismic demand for the buildings observed,

aggregate damage and loss evaluation with additional information related to the

buildings and its surroundings (e.g. seismic demand, soil information), pre-process the

data employing engineering judgement, apply machine learning to the curated data set,

evaluate the performance of several algorithms taking into account the trade-off between

accuracy and model interpretation.

The third and final objective is to identify key parameters contributing to damage

and loss in residential buildings in Christchurch, New Zealand. This task is achieved

through interrogating the previously developed machine learning models on issues such

as feature importance. The study will focus on generating statistics and insights that are

useful for engineers, the insurance sector, and risk managers.
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1.3 Organisation

The outputs of this research are presented over Chapters 3 to 7. A review of the

published literature is presented in Chapter 2, and a summary of the findings is

provided in Chapter 8. Chapter 3 addresses the first objective related to the improvement

of the methodology for seismic damage data collection. Chapters 4 to 6 cover the

second objective on developing a damage and a loss prediction model using machine

learning. Chapters 4 and 7 examine what parameters drive building damage and loss in

earthquakes.

Chapter 2 introduces the background information related to seismic damage and

covers the necessary material and concepts related to machine learning. First, the chapter

covers generalities and the scientific treatment of natural events, their consequences and

seismic risk. Secondly, it provides a review of current post-earthquake damage collection

frameworks with a focus on the tools developed by the Global Earthquake Model

(GEM). Thirdly, it introduces the concept of “vital few and useful many”. Fourthly, the

chapter reviews and discusses current practices in seismic damage and loss modelling.

Fifthly, it provides a background on the Canterbury earthquake sequence (CES). Finally,

it introduces key concepts and current developments on data science and specifically

machine learning.

Chapters 3 and 4 outline the experience and research following the author’s

participation as a New Zealand team member in the 2017 Puebla earthquake

reconnaissance mission.

Chapter 3 presents a new paper form for post-earthquake building damage data

collection. It also report on the experience when the new form was trialled in November

2017 in Mexico City following the 2017 Puebla earthquake. The chapter presents a

damage analysis case study for Calle La Morena based on the empirical data collected.

Chapter 4 presents the development of a machine learning model for seismic damage

prediction in the Roma and Condesa neighbourhoods in Mexico City. The chapter

describes in detail the data preparation, the addition of supplementary information,

data pre-processing, training of the machine learning model, and the selection criteria

for different algorithms.
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Chapters 5 to 7 present the development of a loss prediction model for residential

buildings using data collected in Christchurch, New Zealand, following the 2010-2011

Canterbury earthquake sequence.

Chapter 5 describes the process of aggregating information from multiple databases,

or data merging. This process introduces useful information from databases belonging

to public and private organisations related to the seismic demand, building inventory

or soil conditions. This improved the machine learning model but is also necessary to

overcome missing data in the EQC claim database.

Chapter 6 presents the development of a machine learning model for the seismic loss

prediction of residential buildings in Christchurch, New Zealand. It explains the data

filtering, pre-processing of the target, attribute selection and the preparation prior to the

application of machine learning algorithms. Then, it describes the algorithm selection,

training and the model evaluation.

Chapter 7 deals with the model testing and knowledge extraction from the merged

data set and developed model. The first part of the chapter is concerned with the

prediction performance of each model developed in the previous chapter on unseen data.

The model generalisation and prediction performance are tested with data from other

main events of the Canterbury earthquake sequence. The second part of the chapter deals

with the presentation of findings and derivation of insights from the merged data set and

machine learning models. This section studies the relationship between the numerical

model attributes and the predicted and actual building losses from a statistical and

machine learning model standpoint.

Finally, Chapter 8 summarizes the main conclusions of this study. It highlights

the challenges and limitations, discusses the importance and usefulness interpretable

machine learning model for derivation of actionable insights for insurers, engineers

and emergency planers, and provides recommendations for future extensions of this

research.



CHAPTER 2
Background

This chapter presents a review of the literature with the objective of introducing key

concepts related to seismic risk and modelling. The review begins with defining seismic

risk and damage and loss in the context of large recent earthquakes. The review

then examines available post-earthquake damage collection methodologies and current

practices in seismic damage and loss modelling. The review also presents the principle of

“vital few and trivial many” also known as the Juran or Pareto principle and how it can

be applied to seismic risk and impact studies. The chapter then describes the 2010-2011

Canterbury earthquake sequence (CES) and gives an introduction to New Zealand’s

unique insurance setting. Finally, the review provides a primer on data science, especially

machine learning (ML). It explains the concept of machine learning, describes the main

elements in the development of ML models, explores the operation and details of key

ML algorithms, discusses limitations of ML, and lists examples of several previous civil

and earthquake engineering ML studies.

2.1 Environmental hazards, natural risk, seismic risk

2.1.1 What are environmental hazards?

The United Nations (2016) defines a hazard as “a process, phenomenon or human activity

that may cause loss of life, injury or other health impacts, property damage, social

and economic disruption or environmental degradation”. Hazards may have different

7
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origins: natural, anthropogenic (human-induced), socionatural (combination of natural

and anthropogenic factors). Hazards can happen as a single event but can also occur

as a sequence and be combined in their source and outcomes. Hazards are usually

distinguished by their intensity, frequency, probability and location of occurrence.

2.1.2 Hazard (peril) classification

In the insurance sector, the word ‘peril’ is sometimes used exchangeably for the concept

of ‘hazard’ as defined previously (United Nations Office for Disaster Risk Reduction

(UNDRR), 2015). In order to compare the consequences of various hazards, stakeholders

of the Integrated Research on Disaster Risk (IRDR) research programme established a

structure to classify perils (Integrated Research on Disaster Risk, 2014). Figure 2.1 shows

a list of common perils and their respective main event and hazard family. A peril can

be related to multiple main events. The IRDR classification distinguishes six general

families of hazards: geophysical, hydrological, climatological, biological, extraterrestrial.

Many loss databases follow the IRDR peril classification scheme. A list of the major loss

databases is provided in Appendix A for information.

2.1.3 What is "Natural Risk"?

In a non-technical context, “risk” is often understood as a situation involving exposure to

danger and set of circumstances that might lead to an undesirable outcome and adverse

consequences (Oxford English Dictionary (OED) Online, 2010). In a technical context,

Hansson (2018) differentiates the definition of “risk” from a qualitative and quantitative

sense. From a qualitative definition, “risk” refers to the unwanted event itself or the cause

of the unwanted event. In a quantitative sense, “risk” expresses the probability of the

occurrence of an unwanted event. It sometimes describes the process of decision making

in cognizance of the possible adverse consequences. The most common definition of risk

in technical context is the expected value of an undesirable outcome expressed as the

product of risk probabilities and its severity (Hansson, 2018).

In the context of natural hazards, risk is defined as the combination of the hazard,

exposure and the vulnerability of the asset in question (Porter, 2020). Hazard defines

the frequency and intensity of phenomena. Exposure defines the degree of presence of



Environmental hazards, natural risk, seismic risk 9

Geophysical  

Meteorological

Hydrological  

Climatological

Family

Extraterrestrial

Biological

Main Event

Earthquake
Mass Movement
Volcanic

Convec ve Storm
Extratropical Storm
Extreme Temperature
Fog
Tropical Cyclone 

Flood
Landslide
Wave Ac on

Drought
Glacial Lake Outburst
Wild re

Animal Incident
Disease
Insect Infesta on

Impact
Space Weather 

Ash Fall
Fire following EQ
Ground Movement
Landslide following EQ
Lahar 
Lava Flow

Pyroclas c Flow
Tsunami

Avalanche: Snow, Debris
Coastal Flood
Coastal Erosion
Debris/Mud Flow/Rockfall
Expansive Soil
Flash Flood
Ice Jam Flood
Riverine Flood
Rogue Wave
Seiche
Sinkhole

Peril

Cold Wave
Derecho
Frost/Freeze
Hail
Heat Wave
Lightning
Rain
Sandstorm/Dust storm
Snow/Ice
Storm Surge
Tornado
Wind
Winter Storm/Blizzard

Forest Fire
Land re: Brush, Bush, 

Pasture

Airburst
Collision

Bacterial Disease
Fungal Disease
Parasi c Disease
Prion Disease
Viral Disease

Radio Disturbance

Subsidence

Shockwave

Figure 2.1: Peril classification for natural hazards (Integrated Research on Disaster Risk,
2014)
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?

We make choices as to where 
we inhabit, how we build and 

what research we do

Risk is the combination of
hazard, exposure and 

vulnerability

Death, loss and damage is 
the function of the context 

of hazard, exposure and 
vulnerability

There is no such thing as a
natural disaster, only natural 

hazards

Figure 2.2: Natural hazards, risk and consequences (United Nations Office for Disaster
Risk Reduction (UNDRR), 2019)

people, buildings, infrastructure in the hazard prone areas. Vulnerability is a measure of

the damageability or fragility of the asset which can be physical, social-economical, or

environmental. Natural risk only arises if all three components are present together. The

United Nations Office for Disaster Risk Reduction (UNDRR) expresses the consequences

of natural risks in terms of death, damage and losses (Figure 2.2). Alternatively, recent

engineering practice also uses the death, damage and downtime metrics (Dhakal, 2011).

2.1.4 Evolution and consequences of geophysical and climate-related events

Between 1980 and 2019, the Centre for Research on the Epidemiology of Disasters (CRED)

reported more than 21,000 disaster events that led to 10 or more deaths, and/or 100 or

more people affected, and/or the declaration of a state of emergency (EM-DAT, CRED

(UCLouvain & Guha-Sapir, 2020)). Among them, 61.4% originated from natural hazards.

While being natural hazards, the biological and extraterrestrial families as shown in

Figure 2.1 are not considered in this study. Instead, the following observations focus

on geophysical and climate-related events encompassing the geophysical, hydrological,

meteorological, and climatological families of hazards.

Figure 2.3a shows the annual number of geophysical and climate-related events for

the period 1980-2019 for each disaster type. Figure 2.3b presents this same data as a

stacked column graph highlighting the relative occurrence frequency. Floods and storms

are the most occurring geophysical and climate-related events contributing to 40% and

30% of the total respectively. Earthquakes, the next most frequent event type, only
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Figure 2.3: Annnal number of geophysical and climate-related events between 1980 and
2019 (Source: EM-DAT, CRED (UCLouvain & Guha-Sapir, 2020))

account for 9% of the total. Over the 1980-2019 period, China experienced the highest

number of geophysical and climate-related events (861 events), closely followed by the

USA (849 events). China also recorded the largest number of earthquakes with over

140 seismic events which led to 100 or more people affected, and/or 10 or more deaths.

Geophysical and climate-related events led to more than 2.4 million casualties

between 1980 and 2019. Earthquakes and droughts are the most critical and alone

accounted for almost 1.5 million deaths. Ethiopia, Haiti, and Indonesia heavily suffered

from droughts and earthquakes with 730,000 casualties over the 1980-2019 period.

Storm is the geophysical and climate-related hazard that led to most of the absolute

losses (US$1,472B) for the 1980-2019 period. Flood induced US$813B absolute losses and
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earthquakes US$803B. The USA is the most affected country with direct economic losses

of US$1,103B. China and Japan follow with US$555B and US$511B respectively.

2.1.5 Seismic risk

Figure 2.4a shows earthquakes which led to 100 or more people affected, and/or 10

or more deaths and Figure 2.4b shows the location of the corresponding epicentre and

Richter magnitude of the earthquake events for the period 1980-2019. Most of the larger

seismic events were located along plate boundaries, particularly in the Pacific Ring of

Fire (United States Geological Survey (USGS), 1999).

While earthquakes only represented 9% of the geophysical and climate-related

events, seismic events led to the largest number of casualties with over 884,700 deaths

between 1980-2019. Earthquakes accounted for more than 36% of the total deaths for

geophysical and climate-related events. Haiti was the most affected country with more

than 200,000 lives lost during the 2010 Haiti earthquake.

Figure 2.5a shows the absolute losses, insured losses, and the insurance contribution

for earthquake events between 1980 and 2019. Losses due to seismic events were the

largest in 2011 due to the 2011 Tōhoku earthquake in Japan and 2011 Canterbury

earthquake in New Zealand. Figure 2.5b presents the total losses and insurance

contribution for largest earthquakes. The 2011 Tōhoku earthquake in Japan led to

US$210B absolute losses and was the costliest seismic event, of which US$37.5B (18%)

was paid by insurance. This was the individual event with the largest insurance payout.

The 2010 Darfield earthquake and the 2011 Canterbury earthquake in New Zealand stood

out with an insurance penetration above 75%. This was significantly higher than the next

highest insurance participated earthquake event, the 1994 Northridge earthquake in the

USA at 35%, confirming New Zealand’s unique seismic insurance setting.
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Figure 2.4: Earthquakes which caused 10 or more deaths, and/or affected 100 or more
persons, and/or triggered the declaration of a state of emergency between 1980 and 2019
(Source: EM-DAT, CRED (UCLouvain & Guha-Sapir, 2020))
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Figure 2.5: Total losses and insurance contribution for earthquake events with absolute
losses greater than USD 5B (Source: EM-DAT, CRED (UCLouvain & Guha-Sapir, 2020))

2.2 Post-earthquake damage collection

2.2.1 Review of existing post-earthquake building damage assessment data

collection

The first seismic damage assessment methodology for the US was developed by the

Applied Technology Council (ATC) in the form of a report “ATC-13 Earthquake Damage

Evaluation Data for California” (Rojahn et al., 1985) in 1985. The report presented

damage and loss estimates as well as a framework to compute these estimates. ATC

subsequently published “ATC-20 Procedures for Postearthquake Safety Evaluation of

Buildings” (Applied Technology Council, 1989) and “ATC-20-2 Addendum to the

ATC-20 Postearthquake Building Safety Procedures” (Applied Technology Council

(ATC), 1995). These reports introduced a standardised approach for the seismic damage

evaluation focused exclusively on Californian building stock. These supported the
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information need during the response phase of an earthquake event, while developing

a data frame that enabled further research connecting earthquake damage and losses.

A copy of the ATC-20 Detailed Evaluation Safety Assessment Form is provided for

reference in Appendix B.1.

In Europe, the European Seismological Commission developed the European

Macroseismic Scale 1998 (EMS-98) in 1998 to collect information and classify seismic

damage for masonry and concrete buildings (Grünthal, 1998). In Italy, the “Field Manual

for post-earthquake damage and safety assessment and short-term countermeasures

(AeDES)” provided tools for the evaluation of seismic damage data post-earthquake

(Baggio et al., 2007).

In 1998, the New Zealand Society for Earthquake Engineering (NZSEE) published

the guidelines “Post-earthquake building safety procedures”. The assessment forms and

building evaluation methodology is identical to that of ATC-20. Nevertheless, the New

Zealand document differentiated itself in the placard use. An update of the guidelines

followed in 2009 (New Zealand Society for Earthquake Engineering (NZSEE), 2009)

which expanded the evaluation process to include two levels of rapid assessment

followed by a detailed engineering evaluation if necessary.

Today, the ATC-20 Building Safety Evaluation forms remain the blueprints for

post-earthquake building damage data collection. However, it had been designed

specifically for American building stock and characteristics. There is thus a need

for a single form for capturing building features from different countries, to allow

universal data collection anywhere in the world yet detailed enough to capture important

region-specific features and local construction practice. In 2009, private and public

entities collaboratively founded the Global Earthquake Model (GEM) aimed to develop

a single model for evaluating earthquake risk in any location worldwide. One of

its workstreams was the development of tools to capture damage data following

earthquakes (Foulser-Piggott et al., 2014).

2.2.2 GEM Inventory Data Capture Tools (IDCT)

As part of GEM, scientists and engineers developed the opensource GEM Inventory

Data Capture Tools (IDCT) for collecting building exposure data on site. The tool is
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available on Windows and for Android devices at the time of writing (Global Earthquake

Model (GEM), 2013; Jordan et al., 2014; Rosser et al., 2014). These tools streamlined

the data processing process. However, due to the challenges of an emergency situation

and the potential limit of devices, power and cellular communication availability, and

inflexibility of input for onsite use, paper forms are still developed and used as a backup

or as the main tool itself (Jordan et al., 2014). The GEM project developed paper forms

are provided in Appendix B.2.

The tool development process included field tests in learning from earthquake

exercises in L’Aquila, Italy, in Athens, Greece and Bishek, Kyrgyzstan (Foulser-Piggott

et al., 2013). These experiences further improved aspects of the form construction such

as colour coding for different categories, presentation order of attributes. Field tests

pointed to the need to refine lateral-load resisting system options and data options

(Foulser-Piggott et al., 2013).

2.2.3 GEM building Taxonomy v2.0

Building features classification and arrangements are described in building taxonomies.

Early recorded use of building taxonomies can be found from the end of the

18th century. Insurance companies needed to accurately define and document the

building characteristics to provide adequate fire insurance. The concept of recording

building characteristics evolved during the 19th century. Prudent insurance companies

recognised the need for accurately cataloguing of building inventory, and classification

of buildings and their components in order to apply a technical actuarial approach to

underwriting. This categorisation of material, elements and components into several

groups is called “building taxonomy”.

The use of building taxonomy is standard practice for the calculation of risk

related to fire. Nevertheless, it is only in the mid-1900s that earthquake insurance used

taxonomy systems for rating purposes (Brzev et al., 2013). The 1970s saw the emergence

of Performance-Based Earthquake Engineering (PBEE) procedures (Porter, 2005). The

building industry first started to adopt taxonomy classification systems in 1985 with the

ATC-13 Earthquake Damage Evaluation Data for California (Rojahn et al., 1985). ATC-13

evolved to form FEMA P-154. This methodology first developed in 1985, is still in use
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today in an updated version, the FEMA P-154 Rapid Visual Screening of Buildings for

Potential Seismic Hazards: A Handbook (Rojahn et al., 2015).

The beginning of the 21st century saw the development of building taxonomies for

use outside the U.S. Examples include The World Housing Encyclopedia (Earthquake

Engineering Research Institute (EERI) & International Association for Earthquake

Engineering (IAEE), 2000), the PAGER-STR taxonomy (Jaiswal & Wald, 2008), and the

GEM Building Taxonomy v2.0 which is designed to be applicable worldwide (Brzev et

al., 2013). The GEM taxonomy describes and uniformly classifies buildings according to

thirteen attributes. These are presented in detail in Appendix C.1. Additional information

on the GEM Building Taxonomy Version 2.0 is available in the technical report by Brzev

et al. (2013).

2.2.4 Non-structural components

In PBEE, non-structural components significantly influence the damage and loss analyses

(Porter, 2005). Taghavi and Miranda (2003) showed that non-structural components

commonly make up 60% to 80% of the total value of a building. It is thus important

to adequately identify and categorise these non-structural components with sufficient

details so that components with different damageability are addressed to different

categories (Porter, 2005).

2.3 The principle of “vital few and the useful many”

The principle of “vital few and the useful many” is also commonly referred to as the

Pareto Principle, the 80/20 rule or the Juran Principle. In the late 1800’s, economist

Vilfredo Pareto found that wealth is unequally distributed among the population.

He observed that 80% of the land in Italy was in fact only owned by 20% of the

individuals (Pareto, 1906). In the early 1950s, Joseph M. Juran, extended the application

of the Pareto Principle to quality control (Juran, 1951). Juran affirmed that the Pareto

principle applies to several situations in industry and in daily life. Juran demonstrated

that when several elements contribute to a common effect, often a small part of them

contribute significantly to the outcome. Juran used the expression the “vital few and the
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useful many” defining the critical elements as the “vital few” and the components that

contribute to a lesser extent as the “useful many”.

Juran applied this rule for quality control in industrial process in business. He

emphasized the need to identify the vital few, to streamline and improve the entire

production process as these critical, key parameters contribute the most to the total

effects. A helpful property of the rule is that the Pareto principle applies to several levels

of detail. In the fifth edition of his Quality Control Handbook (Juran & Godfrey, 1999),

Juran presented the example of a paper mill. His objective was to find the key parameters

to minimise wastage due to quality issues. The first broad level of analysis identified the

key headline problem areas. Once the vital few were identified, the emphasis was then

put on the optimization of processes within each individual area causing the highest

percentage of total quality loss. In Juran’s case study, the broke (defect paper that

should be reprocessed) was the critical accounting category. Once aware of this fact, the

80/20 rule was applied again examining the wastage broke category, which was now

subdivided into product types. Here again, the vital few leading to the most of the annual

broke loss were identified.

Figure 2.6 shows a graphical representation of a sample Pareto analysis. It lists the

number of customer queries received and their corresponding query category. The Pareto

diagram highlights that focusing efforts to address customer queries categories A, B and

C will have the most significant contribution addressing more than 70% of the customers’

queries. Independently on the representation solution chosen, the methodology allows

the user to portray the vital few ranked by the magnitude of their contribution.

2.4 Seismic damage and loss assessment

2.4.1 PEER PBEE framework

A milestone in the seismic performance and loss assessment is the development of the

PBEE methodology developed by the Pacific Earthquake Engineering Research Center

(PEER) in the late 1990s (Cornell & Krawinkler, 2000; Poland et al., 1995). In recent years,

the PEER methodology has been extensively described (Broccardo et al., 2016; Günay &

Mosalam, 2013; Yang et al., 2009).
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Figure 2.6: Pareto diagram of the number of customer queries, adapted from (Juran &
De Feo, 2010)

The PEER PBEE methodology is an evolution of the “Vision 2000” framework which

emerged in the aftermath of the 1994 Northridge earthquake in an effort to improve

seismic codes. The framework developed new criteria based on field observations and

quantitative evaluations. It established concepts of key engineering response parameters,

defined acceptance limits for building performance objectives in various level of ground

shaking (Poland et al., 1995). The “Vision 2000” methodology set out a relationship

between the performance objective, the risk profile of a facility, the probability of an

earthquake, and the response parameters related to each performance objective. The

framework introduced new definitions for the building performance: fully operational,

operational, life safe, and near collapse (Poland et al., 1995). Work such as FEMA 273,

ATC-32, ATC-40, and FEMA 356 followed (Applied Technology Council (ATC), 1996a,

1996b; Federal Emergency Management Agency (FEMA), 1997, 2000).

Through these documents, PEER introduced a probablistic framework to account

for uncertainties which is now commonly referred to as the PEER PBEE methodology.

The PEER PBEE methodology eased decision-making by providing a consistent and

clear framework regarding the seismic performance of assets given location and design

(Cornell & Krawinkler, 2000). The PBEE probabilistic framework allowed accounting for

variability and inherent uncertainties in earthquake performance assessment (Moehle

& Deierlein, 2004). The decision variable (DV) is expressed through performance metrics

such as the casualties, the repair costs, and loss-of-use duration (3 D’s: death, dollars, and
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Figure 2.7: Overview of the four steps of PEER PBEE analysis methodology, adapted from
(Porter, 2003)

downtime), which are meaningful to technical and non-technical stakeholders (Porter,

2003).

The first version of PBEE expressed DV as a function of the seismic hazard, in terms of

an intensity measure (IM), and damage, characterised as damage measure (DM) (Cornell

& Krawinkler, 2000). Porter (2003) improved the PEER methodology and introduced a

fourth stage.

Figure 2.7 shows a graphical overview of the four-stage approach which combines

the results of hazard analysis, structural analysis, damage analysis and loss analysis.

The mathematical expression of the mean annual rate of a decision variable is shown

in equation 1.1.

Equation 1.1 expresses the mean annual rate of the outcome or decision variable (DV)

as an integral of a chain of conditional probabilities depending on

• the damage measure (DM), a measure of physical damage associated with a given

engineering demand parameter (e.g. local failure, degree of collapse, loss of load

capacity),

• the engineering demand parameter (EDP), a measure used to characterise

structural response (e.g. floor acceleration, interstory drift, roof displacement), and

• the intensity measure (IM) of the earthquake, a measure used to characterise the

intensity of ground shaking (e.g. ground acceleration, ground velocity, spectral

displacement).
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The United Nations Office for Disaster Risk Reduction (UNISDR) defines disaster risk1 as 
“the potential loss of life, injury, or destroyed or damaged assets which could occur to a 
system, society or a community in a specific period of time, determined probabilistically as 
a function of hazard, exposure, vulnerability and capacity.” Seismic hazard, exposure, and 
physical vulnerability comprise the components of a typical physical seismic risk model, as 
illustrated in Figure 2. 

Figure 2. Schematic diagram illustrating the different components of a typical integrated 
seismic risk model. 

The UNISDR definitions of the terms hazard, exposure, and vulnerability are listed below, 
along with brief descriptions of these terms as they are used in the report. 

• The UNISDR defines hazard2 as “a process, phenomenon or human activity that 
may cause loss of life, injury or other health impacts, property damage, social and 
economic disruption or environmental degradation”, whereas “the manifestation of 
a hazard in a particular place during a particular period of time” is referred to as a 
hazardous event3. The hazard component of an earthquake risk model describes 
the range of possible events of different magnitudes and their corresponding 
probabilities of occurrence in a given time-span in the region of interest, and the 
expected ground shaking associated with these events. 

• The term exposure4 is defined by the UNISDR as “the situation of people, 
infrastructure, housing, production capacities and other tangible human assets 

          
1 2017 UNISDR terminology on disaster risk reduction. 

Disaster risk: http://preventionweb.net/go/7818 
2 Hazard: http://preventionweb.net/go/488 
3 Hazardous event: http://preventionweb.net/go/51759 
4 2017 UNISDR terminology on disaster risk reduction. 

Exposure: http://preventionweb.net/go/7822 

Figure 2.8: Components of an integrated seismic risk model

The derivation of the conditional probabilities, G(DM|EDP) and G(DV|DM), require

a damage analysis and loss analysis based on fragility and loss models respectively

(Yang, 2013). The concept of the PEER PBEE methodology is thouroughly explained

in the seminal work of Porter (2003). In recent years, the earthquake and structural

engineering community extensively studied and applied the PEER PBEE methodology.

The interested reader is directed to Kiureghian (2005), Krawinkler (2005), Mitrani-Reiser

(2007), Dhakal (2011), Gunay and Mosalam (2012), Cutfield (2015), Burton et al. (2016).

2.4.2 Current practice in seismic damage and loss modelling

Loss models for seismic risk rely on three main components (see Figure 2.8): a

seismic hazard component often obtained using a probabilistic seismic hazard analysis

(PSHA) for ground shaking levels for a region, an exposure component encapsulating

information related to the building stock, and a damageability component (Silva et al.,

2019). Damageability manifests as fragility or loss. Fragility is the probability of an

undesirable outcome conditional to an environmental excitation (Porter, 2020). Loss is

often broken down as the 3Ds (dollars, deaths, and downtime) (Dhakal, 2011).

To estimate the probability of damage and loss given an intensity measure, loss

modelers employ fragility and vulnerability functions. Fragility and vulnerability are

related but are not to be mixed. Fragility express the probability between a measure

of the environmental excitation and the undesirable outcome. Vulnerability captures

losses (Porter, 2020). Vulnerability functions express the relationship between a intensity

measure and the repair or replacement cost (Silva, 2019). Vulnerability functions are
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Figure 2.9: Damage assessment in the earthquake risk reduction

often defined for a specific asset class (Porter, 2020). Fragility functions, however, can

present the fragility of an entire structure (Ellingwood et al., 2007), or for individual

components such as structural components (Aslani & Miranda, 2005; Brown & Lowes,

2007), non-structural components (Badillo-Almaraz et al., 2007; Porter et al., 2007), and

contents (Hutchinson & Ray Chaudhuri, 2006; Porter & Kiremidjian, 2001).

Figure 2.9 presents a flowchart showing the connections between damage data

collection to the implementation of the loss prediction model. The damage state of a

building following an earthquake is the key validation in the damage prediction process.

Fragility functions can be developed according to multiple procedures based on the

data type available (Porter et al., 2007). They can be developed 1) empirically through

laboratory experiments and/or real world observations, 2) analytically via simulation, 3)

expert solicitation, or 4) a combination of the above (Porter, 2020). Each approach offers

its own advantages; however, empirical data is often regarded as the most desirable and

reliable as it comes from real buildings subjected to real earthquakes and thus reflects

actual performance. Post-earthquake seismic damage assessment play a crucial role in

the understanding of our buildings deficiencies and strengths. A better understanding of

building failures can lead to design code improvements.
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(FEMA 2003a; NIBS-FEMA 2003). It is perhaps one of the most challenging sources of 
uncertainty to be overcome, as there is a lack of clear guidance in literature concerning 
this topic, beyond some qualitative description of observed damage (D’Ayala and Meslem 
2013). 

For the time being, the existing expressions for the calculation of demands and 
capacities are mostly defined at the element rather than at the global level. Several 
definitions have been implemented in guidelines and codes for the estimation of the 
global damage states through the observation of the progression of local damage at 
elements. According to Eurocode 8 (CEN 2004), two limit states are defined in relation to 
the fundamental performance requirements and compliance criteria for structures within 
seismic regions: 

 Ultimate limit states (ULS), associated with collapse or with other forms of 
structural failure which might endanger the safety of people; 

 Damage limitation states (DLS), associated with damage beyond which specified 
service requirements are no longer met. 

The fragility analysis phase includes the choice of the fitting and sampling methods, the 
selection of models to express the fragility curves and the construction process itself, 
taking into account the uncertainties considered and measured in the previous structural 
and damage analysis phases (FEMA 2003a; Wen et al. 2004; Pagnini et al. 2011; ATC 
2011). 

 
Figure 3. Main components and phases considered in analytical fragility assessment methodologies 
and associated uncertainties. Figure 2.10: Uncertainties in the analytical fragility assessment methodology (Maio and

Tsionis, 2015)

2.4.3 Current limitations

Real-world damage observations are scarce but are extremely valuable as they capture

the aleatoric variability and epistemic uncertainties that are difficult to simulate. The

level of detail captured by assessment forms derived for particular purposes, often does

not match the required level of detail necessary to find the main building parameters

causing damage in buildings. There is an evident lack of damage data concerning

nonstructural elements, which could account for up to 80% of a total building value

(Taghavi & Miranda, 2003).

Current fragility models are most often developed using a probabilistic approach

(Villar-Vega & Silva, 2017). So, whilst it is capable of accounting for uncertainties, it also

highlights that the uncertainties can be large depending on understanding of the system

(Bradley, 2010; Lallemant et al., 2015). Figure 2.10 presents an overview of possible

uncertainties related to analytical fragility assessment. Fragility and vulnerability

functions are affected by three principal causes of variability: record-to-record variability,

building-to-building variability, and uncertainty in the damage criterion (Silva, 2019).

The application of seismic risk assessment is also limited by the tools and data

available. Seismic loss models are often region-specific and are restricted to developed

countries (Silva et al., 2019). Damage and loss data are often scarce and thus statistically
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insufficient to update current damage models (Silva, 2019). Even when sufficient

data is available, considerable efforts in analysing and interpreting data are usually

required to update current damage models. In the case of the 2010-2011 Canterbury

earthquake sequence, the high level of insurance involvement complicated the process

of data collection. It is difficult to know what information was captured by various

private insurance companies. When damage information or claims data are available,

non-disclosure and confidentiality agreements often limit the possibilities to use the data

openly.

2.5 The 2010-2011 Canterbury earthquake sequence

2.5.1 Generalities

In 2010-2011, New Zealand suffered the costliest natural disaster of its history with a

series of earthquakes known as the Canterbury earthquake sequence (CES). Figure 2.11

shows an overview of the location of the Canterbury region within New Zealand as

well as the location of Christchurch’s CBD. The CES began on 4 September 2010 with

the Mw 7.1 Darfield earthquake. The Darfield earthquake was centered approximately

40 km west of Christchurch Central Business District (CBD) (GeoNet, 2010), as shown

on Figure 2.12. Christchurch was the second largest city by population in New Zealand.

The Darfield earthquake collapsed many unreinforced masonry buildings in the CBD,

affected residential houses in wider Christchurch, induced liquefaction in eastern

suburbs, and led to one fatality due to sudden cardiac arrest. In the next 15 months,

the Canterbury region experienced over 3,500 aftershocks with a magnitude above Mw 3

(see Figure 2.13) and around 60 earthquakes above Mw 5 (Christophersen et al., 2013).

On 22 February 2011 12:51pm local time, a Mw 6.2 shallow aftershock occurred directly

under Christchurch CBD at a depth of 5 km (GeoNet, 2011). This was the most significant

event in the CES.

The event commonly referred to as the 2011 Christchurch earthquake occurred near

lunch time when office and street pedestrian occupancies were at their peaks. It collapsed

unreinforced masonry buildings that were not already removed from earlier aftershocks,

irrecoverably damaged many mid-rise and high-rise buildings, and collapsed two
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concrete buildings that led to 135 of the total 182 fatalities in the event (Kam et al.,

2011). It also prompted liquefaction in Christchurch CBD and eastern residential areas

which exacerbated building damage due to foundation displacement. Following this,

there were a number of other aftershocks that led to further building damage.

The CES led to extensive building damage across the region, with over NZ$50

billion of economic losses, the equivalent of 20% of New Zealand’s GDP (Bevere

& Balz, 2012; Munich RE, 2019). The CES also highlighted a number of civil and

earthquake engineering challenges, such as building on liquefiable land, short-term

heightened seismicity, rock slope stability, all of which impacted the reconstruction and

recovery (Elwood et al., 2014). It has been estimated that 70% of Christchurch CBD was

demolished or partly reconstructed. Significant parts of the CBD were cordoned off from

public access for over 2 years from February 2011 until June 2013 (Kim et al., 2017). The

CES, being the fourth most costliest insured global natural disaster in history at the time

(Insurance Council of New Zealand (ICNZ), 2019), also extensively affected the local and

global insurance sector regarding seismic building damage (King et al., 2014).

2.5.2 Seismic insurance following the Canterbury earthquake sequence

Many countries located near tectonic plate boundaries are exposed to frequent

earthquakes. However, insurance uptake for geophysical events remains low (2% in Italy,

5% in Turkey, 9% to 11% in Japan, 10% in Mexico, 26% in Chile, 38% in US, and 80%

in New Zealand (Bevere & Balz, 2012)). New Zealand is an exception with an insurance

penetration of 80% (Bevere & Balz, 2012; King et al., 2014). Over the two years of the CES,

major earthquake events and multiple aftershocks led to more than 650,000 insurance

claims have been lodged (Insurance Council of New Zealand (ICNZ), 2019). 59% were

residential claims and 41% were for commercial claims (Deloitte Access Economics,

2015). Most of the claims for residential buildings were lodged for the main events of

the 4 September 2010 and 22 February 2011. However, it was difficult to assess the exact

impact of each earthquake and aftershocks on buildings, as the time between the event

was too short to permit detailed building assessments following each event, especially

for such a large number of affected buildings. This led to significant legal challenges

between claimants, insurers and reinsurers about the damage apportionment between
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Figure 2.11: Maps of the Canterbury Region (A) New Zealand map with main cities
labelled. (B) Canterbury Region, with districts labelled as 1) Kaikoura; 2) Hurunui;
3) Waimakariri; 4) Christchurch City; 5) Selwyn; 6) Ashburton; 7) Timaru; 8) Mackenzie;
9) Waimate; 10) Waitaki. (C) Map of the Christchurch city area and nearby towns (Potter
et al., 2015).

Figure 2.12: Location of the main events in the 2010-2011 Canterbury earthquake
sequence (O’Rourke et al., 2014).
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Figure 2.13: Cumulative number of aftershocks (with magnitude Mw ≥ 3.0) in the CES,
adapted from (Reyners et al., 2014)

events. Reports shows that 61% of the residential insurance claims were settled by the

Earthquake Commission (EQC) and 39% by private insurers (Deloitte Access Economics,

2015). This distribution points the significant participation of EQC.

2.5.3 The Earthquake Commission (EQC)

The Earthquake Commission (EQC) is a Crown entity which has for its mission to

provide natural disaster insurance for residential property. EQC also manages the

Natural Disaster Fund (NDF) and promotes research and education on solutions for

reducing the impact of natural disasters. EQC involvement is particularly visible with the

EQC insurance, EQCover (Earthquake Commission (EQC), 2019b). EQCover provides

home and land insurance for natural disaster for every home that is covered by private

fire insurance. At the time of the CES, EQC provided coverage for the first NZ$100,000 +

15% Goods and Service Tax (GST) of the building damage, NZ$20,000 + GST for contents

and land damage up to the value of the damaged land (since 1 July 2019 the cap for

residential building cover was increased to NZ$150,000but no longer include coverage

for contents). EQC accessed the NDF and its reinsurance cover to settle claims. Before

the CES, the NDF had a value of NZ$6.1 billion (more than US$4 billion) though this

has now been significantly depleted to less than NZ$180 million following the CES and

a smaller Kaikoura earthquake in 2016 (Earthquake Commission (EQC), 2019e; Feltham,

2011).
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The CES brought major changes for New Zealand, especially for the insurance

industry (Greater Christchurch Group - Department of the Prime Minister and Cabinet,

2017). EQC increased the annual levy in order to replenish the NDF (Earthquake

Commission (EQC), 2017). Owing to the largely unexpected losses for the private

insurers since the CES, there had been a trend of increased scrutiny of the risk profile

of any insurance cover. Private insurers now applies risk-based premium pricing for

earthquake covers. This had led to increased premiums and at times unavailability of

earthquake insurance for some regions in New Zealand.

2.5.4 EQC’s catastrophe loss models

Loss models are important for the insurance and reinsurance sector for quantifying

probable losses to ensure adequate provisions in case of a catastrophe. EQC similarly

relies on hazard and loss models for adjusting base cover, investment and reinsurance

strategies and general planning for response to natural catastrophe (Middleton, 2002).

In early attempts to quantify the risk for New Zealand, EQC actuaries estimated

possible annual claims from historical data, and probable earthquake intensities. With

the evolution of individual computers in the 1980s, new modelling opportunities arose.

EQC first employed a computer-based modelling software for loss simulation in 1993. In

the past, EQC relied on two models that work in tandem: a system dynamics model

(SDM) called ‘Logjam’ for the management of the claims and a hazard and financial

risk management system called ‘Minerva’ (Middleton, 2002). EQC employed Minerva

for estimating claims numbers and losses following a major disaster, as well as for

the predicting earthquake loss risk over 10 years in the future to design EQC levy

structures and deductibles and to maintain the reserves in the NDF. Minerva relied on

an internal database as well as external sources such as the EQC Building Costs or Aon

Soils database (2.14a). An earthquake loss subsystem, which entails an attenuation and

a vulnerability model combined, was used to simulate the losses for any earthquake

event (2.14b). Additionally, it has source models for New Zealand as well as 10-year

portfolio modelsfor predicting loss frequency. Outputs from these possible scenarios are

stored in the Minerva database which can then be accessed by the financial management

sub-system (Shephard et al., 2002). Nowadays, EQC works closely with reinsurance
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Figure 2.14: (a) Overall Minerva system architecture, (b) Schematic diagram of the
Earthquake Loss sub system used in Minerva (Shephard et al., 2002)

companies to ensure that New Zealand retains the necessary international support in

case of a disaster (Earthquake Commission (EQC), 2019d). EQC still uses Minerva as an

impact estimation tool to predict likely losses for single events and one-year probabilistic

analyses.

Without minimizing the great improvement that these tools offered to the New

Zealand insurance sector, limitations are still present. Since EQC offers natural disaster

insurance for residential building on top of existing private insurance, EQC does not

retain a database of its policy holders. It thus uses New Zealand records of real estate

property as a base of its calculation (Middleton, 2002). This led to limitations regarding

the accuracy of the exact loss prediction per asset. Moreover, the CES highlighted that

the existing loss models did not accurately capture liquefaction. Additionally, the models

usually took the building stock as undamaged at the time of the earthquake. But in the

CES, the time between the events was too short such that the structures could not have

been repaired or rebuilt. Cumulative damage occurred in reality but was not taken into

account by the loss models (Drayton & Verdon, 2013).

2.5.5 Earthquake Commission Amendment Act

The Earthquake Commission Amendment Act 2019 (2019/1) received royal assent

on 18 February 2019 (New Zealand Parliament, 2019). The Earthquake Commission

Amendment Act 2019 introduced changes including an increase in the time limit to
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lodge a claim following an earthquake event from three months to two years, the

removal of the insurance cover for content, but an increase in maximum building cover

from NZ$100,000 to NZ$150,000+GST. At the same time, the Act brought revisions to

the information sharing provision. EQC is now allowed to share information about

the residential property claims, which have been lodged with EQC. Homeowners and

prospective buyers can now ask EQC to provide them with information on residential

property damage due to a natural disaster (Earthquake Commission (EQC), 2019c). The

Act also enables EQC to share information for public good purposes which greatly

assisted this study. Before March 2019, building data in EQC’s property database were

rounded to approximately 70 m to protect privacy. This made it impossible to merge

EQC’s claim information with additional databases. The change in legislation permitted

the data to be used to its full potential and enabled new opportunities for this research.

The more accurate building location in the data enabled spatial joining and merging with

new information on liquefaction, soil conditions, and building characteristics.

2.6 A primer on machine learning

2.6.1 Machine learning, data science, and artificial intelligence

To build a model from the observation of data and make prediction through experience,

machine learning employs computers and algorithms. Thus it is often illustrated as a

field of study at the intersection of computer science and mathematics (see Figure 2.15).

Machine learning can also be regarded as a subpart of the greater data science

discipline. Data science employs concepts from multiple fields such as Bayesian

methods, computational complexity theory, control theory, information theory, and even

neurobiology and philosophy (e.g. Occam’s razor principle) (Mitchell, 1997).

Machine learning can also be seen as a subset of artificial intelligence (AI)

(Goodfellow et al., 2016). Tasks such as computer vision, robotic, facial recognition,

or automated driving are commonly associated or achieved through AI. However, a

single definition of AI does not exist. Depending on the approach followed, historical

definitions of AI can be grouped into four categories: thinking humanly, thinking

rationally, acting humanly, and acting rationally. The first two groups relate to the
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Figure 2.15: Core concepts constituting the field of data science (Barber, 2014)

thought process and reasoning, while the two other connects to behaviour. Another

differentiation is the performance measure. Some compare the system performance

against human performance, while others assess performance against rationality (S.

Russell & Norvig, 2020).

Figure 2.16 presents a schematic overview of the overlap between machine learning

and data science and also shows the position of machine learning within the AI field. The

following review focuses on machine learning, data science and its practical applications.

The reader interested in general technologies and concepts related to AI is directed to a

textbook by Russell and Norvig (2020).

2.6.2 Machine learning compared to rule-based systems

Machine learning differentiates itself from rule-based programming as it is not

procedurally predefined by human, instead, the computer analyses features of the input

data and builds a representative model developed from the data. The model can then

be used to extrapolate patterns and predict new possible outcomes (S. Russell & Norvig,

2020). Figure 2.17 shows a schematic overview of rule-based system (sometimes referred

as “traditional approach”), “classic” machine learning where the feature engineering is

done by a human, and representation learning where the system automatically selects

the features.

The term machine learning first appeared in research literature in 1959 (Samuel, 1959).
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from experience. Experience for machines comes in the form of data. Data
that is used to teach machines is called training data. Machine learning turns
the traditional programing model upside down (Fig. 1.2). A program, a set
of instructions to a computer, transforms input signals into output signals
using predetermined rules and relationships. Machine learning algorithms,
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FIGURE 1.1
Artificial intelligence, machine learning, and data science.

FIGURE 1.2
Traditional program and machine learning.

1.1 AI, Machine learning, and Data Science 3

Figure 2.16: Venn diagram of artificial intelligence, machine learning, and data science
(Kotu & Deshpande, 2019)

Using the game of checkers, Samuel (1959) introduced the notion that computers can be

programmed in a way to learn from experience. Mitchell (1997) refined the definition

stating that “a computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.”

In many cases, a machine learning approach offers benefits compared to a traditional

rule-based system. Examples are models which require constant updating over time (e.g.

spam filter), complex problems which cannot be easily implemented using rule-based

systems, and problems for which the best performing algorithm is unknown (e.g. speech

recognition) (Géron, 2019). Another benefit from a machine learning approach is the

ability to indiscriminately reveal correlation to discover insights through ML models

for a system (see Figure 2.18). Machine learning algorithms can process a significant

amount of input data, “study” the data during the model training and develop a solution.

As humans, it is possible to observe the solution to get a better understanding of the

problem, and depending on the algorithm chosen, it is even possible to inspect the

relationships and quantify the influence between the model features.
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other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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Figure 2.17: Schematic overview of rule-based systems, machine learning, and deep
learning systems. Grayed box highlights elements that can learn from data (Goodfellow
et al., 2016)

correlations or new trends, and thereby lead to a better understanding of the prob‐
lem. Applying ML techniques to dig into large amounts of data can help discover pat‐
terns that were not immediately apparent. This is called data mining.

Figure 1-4. Machine Learning can help humans learn

To summarize, Machine Learning is great for:

• Problems for which existing solutions require a lot of fine-tuning or long lists of
rules: one Machine Learning algorithm can often simplify code and perform bet‐
ter than the traditional approach.

• Complex problems for which using a traditional approach yields no good solu‐
tion: the best Machine Learning techniques can perhaps find a solution.

• Fluctuating environments: a Machine Learning system can adapt to new data.
• Getting insights about complex problems and large amounts of data.

Examples of Applications
Let’s look at some concrete examples of Machine Learning tasks, along with the tech‐
niques that can tackle them:

Analyzing images of products on a production line to automatically classify them
This is image classification, typically performed using convolutional neural net‐
works (CNNs; see Chapter 14).

Examples of Applications | 5

Figure 2.18: Machine learning can help humans understand a problem better (Géron,
2019)
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2.6.3 Types of learning

Machine learning systems can be categorised according to the type of feedback that

a ML system receives during the learning process. Three main types of learning are

distinguished: supervised learning, unsupervised learning, and reinforcement learning.

Semi-supervised learning, which combines supervised and unsupervised learning, is

sometimes seen as a fourth category.

• In supervised learning, the ML system is provided with input-output pairs and

is asked to find a function that best captures the input-output relationship.

Depending on the type of the output, the learning problem is named

“classification” if the objective is to predict categories, or “regression” if the target

output is a number.

• In unsupervised learning, the ML system is provided with input data without

specific outputs. It is asked to learn by itself. Common examples include clustering

(ML should find groups sharing similar properties), anomaly detection (ML should

highlight instances different from the standard ones), association rule learning

(ML should find relationships between the features), and dimensionality reduction

(ML should combine multiple correlated features to simplify the data with limited

information loss).

• In reinforcement learning, the ML system learns over iteration, performing actions

in an environment and getting rewards or punishments (negative rewards)

depending on the action.

2.6.4 Examples of machine learning application

Nowadays, machine learning is applied in many fields for diverse applications.

Examples include web related activities (e.g. engine search, spam filter, online shopping),

assistance (e.g. personal virtual assistants, chatbots), gaming (e.g. bot for a game),

payment and banking (e.g. credit card fraud detection, voice verification), real estate (e.g.

house price prediction), business (e.g. forecasting a company’s revenue), transportation

(e.g. route optimisation, predictive fleet maintenance), medicine (e.g. detection of
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malignant tumours on CT scans). Machine learning applications are often grouped by

the types of task performed. Table 2.1 lists some machine learning tasks and provides a

description and examples for each category.

The application of machine learning in civil engineering is increasing in popularity.

Below is a few notable relevant ML studies,

• the evaluation of post-earthquake structural safety (Zhang et al., 2018),

• the rapid loss assessment (Kovačević et al., 2018),

• the derivation of fragility curves (Kiani et al., 2019),

• the quality classification of ground motion records (Bellagamba et al., 2019),

• the classification of earthquake damage to buildings (Mangalathu & Burton, 2019;

Mangalathu et al., 2020) and bridges (Mangalathu et al., 2019; Mangalathu & Jeon,

2019).

Xie et al. (2020) present an extensive review of the application of machine learning in

earthquake engineering. Sun et al. (2020) give a review of machine learning applications

for building structural design and performance assessment.

2.6.5 General framework of a machine learning model

Before starting a machine learning project, it is essential to carefully define the problem

and objective. It should be noted that the machine learning model objectives can be

different from the overall business goal (Burkov, 2020). If the machine learning is to

be applied in business or industry, it is necessary for the data science team to know

the specific purpose that the machine learning model should achieve but also to get an

understanding of the business problem.

Figure 2.19 shows the main steps of a machine learning project. As soon as the

objective is clearly defined, the data engineer starts to collect and prepare relevant

data. The collected data is transferred to the data scientist (referred to as data

analyst in Figure 2.19) for data pre-processing, model training and model evaluation.

The time for the data preparation and data cleaning should not be underestimated.

Experience showed that usually, 80% of the time and efforts of a data scientist lies
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Table 2.1: Data science tasks (non exhaustive) and examples, adapted from (Kotu &
Deshpande, 2019)

Type of ML
learning

Tasks Description Examples

Supervised
Learning

Classification Predict if a data point
belongs to one of the
predefined classes.
The prediction will
be based on learning
from a known data
set.

• Assigning voters into
known buckets by
political parties

• Bucketing new
customers into
known customer
groups

Supervised
Learning

Regression Predict the numeric
target label of a data
point. The prediction
will be based on
learning from a
known data set.

• Predicting the
unemployment
rate for the next year

• Estimating insurance
premium

Supervised
Learning

Recommender
system

Predict the preference
of an item for a user.

• Finding the top
recommended
movies for a user

Supervised
Learning

Time series
forecasting

Predict the value of
the target variable for
a future timeframe
based on historical
values.

• Sales forecasting

• Production
forecasting

• Any growth
phenomenon
that needs to be
extrapolated

Unsupervised
Learning

Clustering Identify natural
clusters within the
data set based on
inherit properties
within the data set.

• Finding customer
segments in a
company based
on transaction, web,
and customer call
data

Unsupervised
Learning

Anomaly
detection

Predict if a data point
is an outlier compared
to other data points in
the data set.

• Detecting fraudulent
credit card
transactions

• Detecting network
intrusion

Unsupervised
Learning

Association
analysis

Identify relationships
within an item set
based on transaction
data.

• Finding cross-selling
opportunities for
a retailer based on
transaction purchase
history
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Figure 2.19: Machine learning project life cycle (Burkov, 2020)

in data pre-processing while modelling accounts only for the remaining 20% (Kotu &

Deshpande, 2019). Furthermore, a machine learning project is often iterative, and it may

be necessary to return to the feature engineering and data collection step, or even to

the general goal definition in order to improve the model. Once a satisfactory model

accuracy is achieved, the machine learning model can be deployed. After successful

deployment, it should not be forgotten that a machine learning model must be monitored

and maintained over time.

The main steps of machine learning are shown in an alternate format in Figure 2.20.

While Figure 2.19 presented the key steps and highlighted the person responsible for

each step, Figure 2.20 describes the tasks related to each step. It is reiterated that data

pre-processing is a critical step and often require significant time and efforts.

2.7 Data pre-processing/ Feature engineering

The performance and the capacity of machine learning algorithms to learn from data

is linked to the quality of the input data (Raschka & Mirjalili, 2019). Before training

a machine learning model, it is necessary to carefully prepare the data by handling

missing data, select useful features to train on (i.e. feature selection), remove outliers,

remove skewness in the data, transform categorical data in a form that is usable by the

machine learning algorithm (Kuhn & Johnson, 2013). To achieve this purpose, it might



38 Background

8. Launch

7. Present the solution

6. Fine-tune the models

5. Trial different models

4. Prepare the data

3. Explore the data

2. Get the data

1. Frame the problem

First insights using
Business Intelligence

Supplement with 
external information

Handle missing values Inspect feature 
correlationFeature engineering

Divide the data into a 
train, test and 

validation set (if required)

Logistic regression Support vector machine Decision tree Random Forest, and….

Select most promising 
algorithm

Compare the model 
accuracy

Find optimal 
hyperparameters

Identify features Identify types of variable

Evaluate model on
test set

Run the prediction 
model

Compare with real 
damage data Evaluate the outputs Iterate if necessary

Expand the methodology

Objective of the machine 
learning model

Principal source/
Main database

Type of problem 
(classification, regression, 

clustering)

Figure 2.20: Main steps of a machine learning model, adapted from (Géron, 2019)

be necessary to combine existing features to generate new features more appropriate for

the objective (i.e. feature extraction) or create new features by adding information from

additional data (Géron, 2019).

The requirement for data pre-processing depends on the type of input data, which

can for instance be numerical, categorial, image, text, or speech. This research project

deals only with spatial, numerical, and categorical data. This review thus focus on the

preparation of numerical and categorical input data.

2.7.1 Feature extraction and feature engineering

Feature extraction and feature engineering define the conceptual as well as programmatic

process of mining, extracting, and transforming raw data into tidy data suitable

for machine learning. For supervised learning, the input data should be labelled or

tagged data. In other words, raw data that has been interpreted/labelled/tagged some

informative target sets. For example, an unlabelled data x-ray image can be labelled as

diseased or healthy. The objective of feature engineering is to transform raw data into

feature vectors where feature vectors are one-dimensional arrays. Each feature vector is

a sequence of values which describes the example and has a dimensionality (vector’s

length) related to the number of values in the sequence. The transformation from raw
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Figure 3: Tidy data: examples are rows and attributes are columns.

1.3.2 Raw and Tidy Data

As we just discussed, directly used data is a collection of entities that constitute the basis
of a dataset. Each entity in that collection can be transformed into a training example.
Raw data is a collection of entities in their natural form; they cannot always be directly
employable for machine learning. For instance, a Word document or a JPEG file are pieces
of raw data; they cannot be directly used by a machine learning algorithm7.

To be employable in machine learning, a necessary (but not sufficient) condition for the data
is to be tidy. Tidy data can be seen as a spreadsheet, in which each row represents one
example, and columns represent various attributes of an example, as shown in Figure 3.
Sometimes raw data can be tidy, e.g., provided to you in the form of a spreadsheet. However,
in practice, to obtain tidy data from raw data, data analysts often resort to the procedure
called feature engineering, which is applied to the direct and, optionally, indirect data
with the goal to transform each raw example into a feature vector x.

It’s important to note here that for some tasks, an example used by a learning algorithm
can have a form of a sequence of vectors, a matrix, or a sequence of matrices. The notion of
data tidiness for such algorithms is defined similarly: you only replace “row of fixed width in
a spreadsheet” by a matrix of fixed width and height, or a generalization of matrices to a
higher dimension called a tensor.

The term “tidy data” was coined by Hadley Wickham in his paper with the same title8.

As I mentioned at the beginning of this subsection, data can be tidy, but still not usable by
7The term “unstructured data” is often used to designate a data element that contains information whose

type was not formally defined. Examples of unstructured data are photos, images, videos, text messages,
social media posts, PDFs, text documents, and emails. The term “semi-structured data” refers to data
elements whose structure helps deriving types of some information encoded in those data elements. Examples
of semi-structured data include log files, comma- and tab-delimited text files, as well as documents in JSON
and XML formats.

8Wickham, Hadley. “Tidy data.” Journal of Statistical Software 59.10 (2014): 1-23.

Andriy Burkov Machine Learning Engineering - Draft 10

Figure 2.21: Tabular tidy data. The columns represents attributes and the rows examples
(Burkov, 2020)

data to tidy data in the form of feature vectors should be consistent for all the examples in

the data set, such that each feature vector entails the same type of information (attribute)

at the same position in the sequence. Figure 2.21 shows an example of tabular tidy data.

Examples are represented by rows and columns represent attributes. For all the data set,

the information pertaining to a same attribute are located at the same position (i.e. the

same column).

In the literature, the terms “feature” and “attribute” are usually used interchangeably.

Nevertheless, strictly speaking, an attribute is a data type, a specific property in a data

set. A feature is an attribute with a value attached to it. Similarly, the terms “instance” or

“sample” are employed in place of “example” (Burkov, 2020; Géron, 2019).

Unfortunately, there is no one-size-fits-all feature engineering process. Some

transformations are optimal for some algorithms but are suboptimal for others. Some

algorithms have the ability to select useful features and predictors that benefit the model

accuracy, other algorithms do not. Consequently, feature engineering is machine learning

project specific.

Handling missing data

Research has highlighted that the majority of the ML algorithms do not work, or perform

very poorly when there is missing feature in any entry of the input data. Thus, a

precondition critical to the success of a machine learning model is the requirement of

“clean data” (Géron, 2019; Raschka & Mirjalili, 2019). Depending on the number of

missing values compared to the number of examples in the data set, different approaches

can be followed. It is possible to simply discard the instances or attributes entailing

missing values. In some cases, it is also possible to fill in the missing values using for
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example

• the mean, median or mode,

• the imputation of the missing value (e.g. using nearest neighbours or specific

libraries),

• the prediction of the missing values (i.e. using correlation in the existing data).

2.7.2 Feature selection

Feature selection is the process of selecting relevant features for the construction of a

machine learning model. Only the features relevant to the task are to be retained. The

goal of feature selection is 1) to improve the prediction performance, 2) to provide a

faster and less memory-intensive learning time, and 3) to enable a better understanding

(Guyon & Elisseeff, 2003).

Guyon and Elisseeff (2003) showed that variables that are perfectly correlated are

redundant. It is thus advised to remove correlated features as some algorithms perform

poorly if input variables are highly correlated (Tang et al., 2014).

2.7.3 Feature transformation

Handling numerical features

Some algorithms might have specifications related to the form of the input. One

of the standard requirements is the need for a common scale between attributes.

Techniques such as normalisation and feature scaling should be applied before the model

training. Logarithm, square root, inverse or statistical methods such as the Box-Cox

transformation can be used to address data skewness. Outliers might also affect the

model performance. While the removal of outliers can benefit the model performance,

it should always follow critical judgement. Outliers are not always recording errors or

mistakes. In some cases, outliers represent valid values.

Handling categorical features

Categorical features require processing before algorithms can make use of them. A

typical process to transform categorical features into input variables suitable for ML is
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one-hot encoding. One-hot encoding creates one binary attribute for each category of a

categorical feature (Géron, 2019). For example if a data set includes an attribute “Color”

with four possible values (red, yellow, green, and blue). It is possible to express each

value with a binary vector, as listed below.

Red = [1, 0, 0, 0]

Yellow = [0, 1, 0, 0]

Green = [0, 0, 1, 0]

Blue = [0, 0, 0, 1]

The reader interested in more information related to transformation techniques is

directed to Kuhn and Johnson (2013).

2.7.4 Training, validation, and test set

Before developing a machine learning model, it is necessary to divide the data into

different sets: the training, validation and test sets. Such practice is required to ensure the

trained model can make predictions not only memorised from the training examples and

that the trained model can generalise for other samples (without over- or underfitting).

Only the training set is used for training the machine learning model. The validation

(sometimes called development set) and test set should be left untouched during the

training process. These are the holdout sets. The validation set is used to select the model

and tune the hyperparameters. Hyperparameters are variables of the ML algorithm that

affect the performance of the ML model but are not related to the training data (e.g.

regularisation hyperparameter). The test set is employed to evaluate the final model

performance (Burkov, 2020).

Figure 2.22 shows a schematical overview of a data set that has been split into a

training test data set. The situation presented in Figure 2.22 does not include a validation

set. In some cases, for example when the instances in the training data set are scarce, the

model parameters can be tuned using cross-validation.

2.7.5 Class imbalance

In real-world applications, some data sets exhibit a significant imbalance between the

classes (e.g. credit card fraud, disease). However, most standard machine learning



42 Background

Figure 2.22: Overview of the train/test splitting when there is no validation set

algorithms for classification assume a balanced distribution in the classes. An imbalanced

input data set can hamper the model performance as the algorithm will focus on the class

with the largest number of instances (Haibo He & Garcia, 2009). This will lead to poor

prediction performance, especially related to the prediction of the minority class.

In the last twenty year, many studies tried to overcome the issue of class

imbalance (Prati et al., 2009). The proposed solutions can be grouped into two

main categories depending on the approach: either at an algorithmic level or a

data level. Algorithmic level solutions encompass approaches such as cost-sensitive

learning, one-class classifiers, and ensembles of classifiers. The reader interested in more

information related to these techniques is directed to Prati et al. (2009). The alternate data

level solutions try to balance the data between the classes. Sampling methods are often

used to transform the data and reduce the gap between the categories. It is either possible

to remove instances in the majority classes to have a number of instances closer to the

minority class (random under-sampling) or to replicate instances from the minority class

(random over-sampling).

There are caveats from random under-sampling and random over-sampling. Random

under-sampling might discard data that might be important for the model. Random

over-sampling can increase the possibility of overfitting. The use of heuristics to remove

only training examples that have a lesser importance for the model can be used to

limit issues applying under-sampling methods. To avoid overfitting for over-sampling,

interpolation can be applied for the under-represented class that are located close

together (Prati et al., 2009).
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A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning

Method Over-sampling Under-sampling

Binary Mutli-class Binary Multiclass

ADASYN (He et al., 2008) � � � �
SMOTE (Chawla et al., 2002; Han et al., 2005; Nguyen et al., 2011) � � � �
ROS � � � �
CC � � � �
CNN (Hart, 1968) � � � �
ENN (Wilson, 1972) � � � �
RENN � � � �
AKNN � � � �
NM (Mani and Zhang, 2003) � � � �
NCL (Laurikkala, 2001) � � � �
OSS (Kubat et al., 1997) � � � �
RUS � � � �
IHT (Smith et al., 2014) � � � �
TL (Tomek, 1976) � � � �
BC (Liu et al., 2009) � � � �
EE (Liu et al., 2009) � � � �
SMOTE + ENN (Batista et al., 2003) � � � �
SMOTE + TL (Batista et al., 2003) � � � �

sample performs the sampling and returns the data with the desired balancing ratio; and
(iii) fit sample is equivalent to calling the method fit followed by the method sample.
A class Pipeline is inherited from the scikit-learn toolbox to automatically combine
samplers, transformers, and estimators. Additionally, we provide some specific state-
of-the-art metrics to evaluate classification performance.

4. Implemented methods

The imbalanced-learn toolbox provides four different strategies to tackle the problem of
imbalanced dataset: (i) under-sampling, (ii) over-sampling, (iii) a combination of both,
and (iv) ensemble learning. The following subsections give an overview of the techniques
implemented.

4.1 Notation and background

Let χ be an imbalanced dataset with χmin and χmaj being the subset of samples belonging
to the minority and majority class, respectively. The balancing ratio of the dataset χ is
defined as:

rχ =
|χmin|
|χmaj |

, (1)

where | · | denotes the cardinality of a set. The balancing process is equivalent to resample
χ into a new dataset χres such that rχ > rχres .

Under-sampling Under-sampling refers to the process of reducing the number of samples
in χmaj . The implemented methods can be categorized into 2 groups: (i) fixed under-
sampling and (ii) cleaning under-sampling. Fixed under-sampling refer to the methods
which perform under-sampling to obtain the appropriate balancing ratio rχres . Contrary
to the previous methods, cleaning under-sampling do not allow to reach specifically the
balancing ratio rχres , but rather clean the feature space based on some empirical criteria.

3

Figure 2.23: Overview of techniques for over- and under-sampling implemented in the
imblanced-learn Python toolbox (Lemaitre et al., 2017a)

Applying the solutions mentioned above to imbalanced data sets often improves the

model predictions performance, especially for the under-represented class. However, it

is often not possible to directly know which solution will work better. Depending on

the raw imbalanced data set, one or the other over-sampling or under-sampling method

might lead to better prediction performance. Implementing each of the approaches from

scratch would be a time-consuming task. Lemaitre et al. (2017a) developed a Python

toolbox to address imbalanced data set before the training of a machine learning model.

The package ‘imbalanced-learn’ simplifies the application of over- and under-sampling

techniques in Python. Figure 2.23 presents an overview of the method that are embedded

within the ‘imbalanced-learn’ toolbox. It includes random over-sampling (ROS) and

random under-sampling (RUS) as well as many heuristic under-sampling methods (e.g.

NearMiss (NM), Condensed Nearest Neighbor Rule (CNN), Tomek links (TL), One-sided

selection (OSS), Neighborhood Cleaning Rule (NCL)) and heuristic over-sampling

methods (Synthetic Minority Over-sampling Technique (SMOTE), SMOTE + Edited

nearest neighbour (ENN)). The reader interested in more details on the background

behind each of the methods included in the imbalanced-learn package is directed to

Lemaitre et al. (2017b).
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2.8 Model training

2.8.1 Algorithm selection

Machine Learning can be classified based on their type of supervision: supervised,

unsupervised, semi-supervised, and reinforcement learning. The choice of the type of

supervision depends on the purpose of the model and the data available. Figure 2.24

shows an algorithms guide based on the python scikit-learn package. The selection is

based on the type of tasks and the number of data points available.

For each type of supervision, several algorithms are available. Some of the most

relevant algorithms for supervised learning are k-Nearest Neighbors, Linear Regression,

Logistic Regression, Support Vector Machines (SVMs), Decision Trees, Random Forests.

Details and data pre-processing requirements for the main algorithms for machine

learning are summarised in Figure 2.25.

A widely used programming for machine learning is scikit-learn (Pedregosa et

al., 2019). The scikit-learn module integrates several machine learning algorithms,

both applicable to supervised and unsupervised problems. Through a user-friendly

application programming interface (API), scikit-learn enables seamless integration of

machine learning tools into Python projects (Buitinck et al., 2013).
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Figure 2.24: How to choose a machine learning algorithm? (Pedregosa et al., 2019)
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Table A.1: A summary of models and some of their characteristics

Model Allows

n < p

Pre-processing Interpretable Automatic

feature

selection

# Tuning

parameters

Robust to

predictor noise

Computation

time

Linear regression† × CS, NZV, Corr � × 0 × �
Partial least squares � CS � ◦ 1 × �
Ridge regression × CS, NZV � × 1 × �
Elastic net/lasso � CS, NZV � � 1–2 × �
Neural networks � CS, NZV, Corr × × 2 × ×
Support vector machines � CS × × 1–3 × ×
MARS/FDA � ◦ � 1–2 ◦ ◦
K-nearest neighbors � CS, NZV × × 1 ◦ �
Single trees � ◦ � 1 � �
Model trees/rules† � ◦ � 1–2 � �
Bagged trees � × � 0 � ◦
Random forest � × ◦ 0–1 � ×
Boosted trees � × � 3 � ×
Cubist† � × ◦ 2 � ×
Logistic regression∗ × CS, NZV, Corr � × 0 × �
{LQRM}DA∗ × NZV ◦ × 0–2 × �
Nearest shrunken

centroids∗
� NZV ◦ � 1 × �

Näıve Bayes∗ � NZV × × 0–1 ◦ ◦
C5.0∗ � ◦ � 0–3 � ×
†regression only ∗classification only

Symbols represent affirmative (�), negative (×), and somewhere in between (◦)
• CS = centering and scaling
• NZV = remove near-zero predictors
• Corr = remove highly correlated predictors

Figure 2.25: Overview of main machine learning algorithms (Kuhn & Johnson, 2013)
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2.8.2 Linear regression

A linear regression model is a linear model that assigns weights to each input feature and

computes the sum to make a prediction. A constant parameter called the bias or intercept

(θ0) is added into the equation. The equation for a linear regression model prediction is

shown in Equation 2.1.

ŷ = θ0 + θ1x1 + θ2x2 + ... + θnxn (2.1)

where: y is the predicted value

n is the number of features

xi is the ith feature value

θj is is jth model parameter

Using a vectorized form, Equation 2.1 can be written as the dot product of θ and x as

shown in Equation 2.2.

ŷ = θ · x (2.2)

where: θ is the model’s parameter vector (including θ1 to θn and the bias term θ0)

x is the instance’s feature vector (including all the terms from x1 to xn)

2.8.3 Logistic regression

A logistic regression model is similar to a linear regression model as it computes a

weighted sum of the input features, however, returns a binary prediction. It is defined

as follow:

ŷ =





0 if p̂ < 0.5

1 if p̂ ≥ 0.5
(2.3)

where: ŷ is the prediction

p̂ is the probability defined as
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p̂ = σ(xTθ) (2.4)

where: x is vector of input features

θ is the model parameter vector

σ is the logistic function defined as

σ(t) =
1

1 + e−t (2.5)

2.8.4 Support Vector Machine (SVM)

SVMs algorithms can be linear or nonlinear. Equation 2.6 the properties of a classifier

prediction using a separating hyperplane:

ŷ =





0 if wTx + b < 0

1 if wTx + b ≥ 0
(2.6)

where: ŷ is the prediction

w is the the feature weights vector

x is the instance

b is the bias term

Equation 2.6 works well for data sets that are linearly separable. This method can

be generalized to adopt nonlinear boundaries by enlarging and transforming the feature

space. Details on the implementation of nonlinear SVM can be found Hastie et al. (2009).

2.8.5 Decision trees

One of the main advantages of adopting decision trees algorithm is the high

interpretability. This is possible by inspecting the steps within model through

two-dimensional trees (Molnar, 2020).
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The development of a decision tree relies on two main steps. First, the space of all

possible values should be divided into non-overlapping regions. For recursive binary

splits for classification problems, Gini index and the entropy (here denoted G and D

respectively) are commonly used as the primary measures. These are defined as follow:

G =
K

∑
k=1

p̂mk(1− p̂mk) (2.7)

D = −
K

∑
k=1

p̂mklog( p̂mk) (2.8)

where p is the proportion of training observations in the mth region from the kth

class. Second, the mean of the response values for the training observations is used to

make prediction for observation within the same region. The process is then iterated to

grow the tree (Hastie et al., 2009; James et al., 2013).

2.8.6 Random forest

Random Forest is an ensemble method that averages the aggregate of predictions from

individual Decision Trees (Breiman, 2001). This has the benefit of reducing the variance

of the error rather than the bias, thus it typically will produce more accurate prediction

beyond the training data set than using a single decision tree model. Figure 2.26 shows

the main steps of the random forest algorithm. Interested readers are directed to Hastie

et al. (2009) for more details related to the mathematical background behind the random

forest algorithm.

2.9 Model evaluation

A key step in developing a machine learning model is selecting the optimum algorithm.

This can be a challenge with the large range of algorithms available. Data scientists

have developed a range of objective metrics to aid model performance evaluation and

hyperperameters (parameter of an algorithm) tuning. For classification models, the

hyperparameters command the trade-off between precision and recall as well as the

trade-off between bias and variance (Burkov, 2020).



50 Background

Figure 2.26: Overview of the Random Forest algorithm, adapted from (Hastie et al., 2009)
and (Efron & Tibshirani, 1986)
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Figure 2.27: Details of a confusion matrix

2.9.1 Performance evaluation of classification models

The accuracy of a model is important, but it is not the only performance measure for

classification models. Other important metrics include,

• precision (also called positive predictive value),

• recall (also called sensitivity),

• F-score,

• cost-sensitive accuracy, and

• the area under the receiver operating characteristic (ROC) curve (AUC).

Figure 2.27 shows a typical confusion matrix. It is a useful tool for reporting on the

accuracy of a predictive model, it tables the actual class (as rows) against the model

prediction (as columns) This separates the prediction outcomes as true positives, true

negatives, false positive, and false negative.

These definitions enable two additional measures: precision and recall which are

as defined in equations 2.9 and 2.10. Precision indicates the accuracy of the positive

predictions, and recall expresses the true positive rate as a ratio of the positive predictions

over all actual positive values.

precision =
TruePositives

TruePositives + FalsePositives
(2.9)
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recall =
TruePositives

TruePositives + FalseNegatives
(2.10)

The F1 score is a single combined representative metric of precision and recall

developed to simplify the performance comparison. The F1 score, as defined in

equations 2.11 and 2.12, is the harmonic mean of precision and recall. It is high only

if both recall and precision are high. A high F1 score thus indicates a good model

performance.

F1score =
2

1
precision + 1

recall

(2.11)

which can also be re-written as,

F1score =
TruePositives

TruePositives + FalseNegatives+FalsePositives
2

(2.12)

2.9.2 Good fit, overfitting, underfitting

The performance of a machine learning model relates to its ability to learn, from a

training set, and generalise predictions on unseen data (test data) (Hastie et al., 2009).

To achieve this objective, it is important to find a balance between the training error and

the prediction error (generalisation error). This is known as the bias-variance trade-off

(Burkov, 2020). Figure 2.28a illustrates the concepts of bias and variance using points on

a target. Each point symbolises an individual realisation of the model (Fortmann-Roe,

2012). In this illustration, the variance is represented by the scattering of the data. The

lower the variance, the lower the scatter in the data. The bias is expressed by the distance

to the middle of the target. The closer the points are to the bullseye, the lower the bias.

Figure 2.28b symbolically presents the bias-variance trade-off as a function of the

model complexity and prediction error. More complex models bring a lower bias on the

training set, however, also induce more variance in the model. Ideally, both low bias

and low variance are desirable (James et al., 2013). Figure 2.28b makes it clear that both

measures typically cannot be minimised simultaneously, as a model that performs well

on the training set will have difficulties to generalise thus leading to a higher prediction

error for the test set. The task of the model developer is thus to select a model and
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11/5/2020 Understanding the Bias-Variance Tradeoff

scott.fortmann-roe.com/docs/BiasVariance.html 2/7

Fig. 1 Graphical illustration of bias and variance.

1.3 Mathematical Definition
after Hastie, et al. 2009 1

If we denote the variable we are trying to predict as  and our covariates as , we may assume that there
is a relationship relating one to the other such as  where the error term  is normally
distributed with a mean of zero like so .

We may estimate a model  of  using linear regressions or another modeling technique. In
this case, the expected squared prediction error at a point  is:

This error may then be decomposed into bias and variance components:

That third term, irreducible error, is the noise term in the true relationship that cannot fundamentally be
reduced by any model. Given the true model and infinite data to calibrate it, we should be able to reduce
both the bias and variance terms to 0. However, in a world with imperfect models and finite data, there is
a tradeoff between minimizing the bias and minimizing the variance.

2 An Illustrative Example: Voting Intentions
Let's undertake a simple model building task. We wish to create a model for the percentage of people who
will vote for a Republican president in the next election. As models go, this is conceptually trivial and is
much simpler than what people commonly envision when they think of "modeling", but it helps us to
cleanly illustrate the difference between bias and variance.

A straightforward, if flawed (as we will see below), way to build this model would be to randomly choose
50 numbers from the phone book, call each one and ask the responder who they planned to vote for in the
next election. Imagine we got the following results:

Voting Republican Voting Democratic Non-Respondent Total
13 16 21 50

Low Variance High Variance

Low Bias

High Bias

Y X
Y = f(X) + ϵ ϵ

ϵ ∼ N (0, )σϵ

(X)f̂ f(X)
x

Err(x) = E [(Y − (x) ]f̂ )2

Err(x) = + E[ ] +(E[ (x)] − f(x))f̂
2

( (x) − E[ (x)])f̂ f̂
2

σ2
e

Err(x) = + Variance + Irreducible ErrorBias2

(a) Graphical illustration of bias and
variance (Fortmann-Roe, 2012)
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.
The variance term is simply the variance of an average here, and de-

creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.
More generally, as the model complexity of our procedure is increased, the

variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.
Typically we would like to choose our model complexity to trade bias

off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.
Figure 2.11 shows the typical behavior of the test and training error, as

model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

(b) Test and training error as a function of
model complexity for machine learning model
(Hastie et al., 2009)

Underfitting Good fit Overfitting

Figure 5: Examples of underfitting (linear model), good fit (quadratic model), and overfitting
(polynomial of degree 15).

• adding more training data, when possible, and
• reducing regularization.

5.6.2 Overfitting

Overfitting is another problem a model can exhibit. The model that overfits usually predicts
the training data labels very well, but works poorly on the holdout data.

An example of overfitting in regression is shown in Figure 5 (right). The regression line
predicts almost perfectly the targets for almost all training examples, but will likely make
significant errors on new data if you decide to use it for predictions.

You will find another name for overfitting in the literature: high variance. The model
is unduly sensitive to small fluctuations in the training set. If you sampled the training
data differently, the result would be a significantly different model. These overfitting models
perform poorly on the holdout data, since holdout and training data are sampled from the
dataset independently of one another. So, the small fluctuations in the training and holdout
data are likely to be very different.

Several reasons can lead to overfitting:

• the model is too complex for the data. Very tall decision trees or a very deep neural
network often overfit;

• there are too many features and few training examples; and
• you don’t regularize enough.

Several solutions to overfitting are possible:

• use a simpler model. Try linear instead of polynomial regression, or SVM with a linear
kernel instead of RBF, or a neural network with fewer layers/units;

• reduce the dimensionality of examples in the dataset;

Andriy Burkov Machine Learning Engineering - Draft 25

(c) Graphical representation of underfitting, good fit, and overfitting (Burkov, 2020)

Figure 2.28: Bias-variance trade-off

hyperparameters that best balances model complexity, model error and ability for the

model to be generalised.

Figure 2.28c graphically illustrates the concept of ‘good fit’, ‘underfitting’, and

‘overfitting’ for a set of points. The red linear curve has a low variance but a high bias

which lead to a large prediction error for new instances, the model is underfitting. In

contrary, the yellow curve has a low bias but a high variance. The model will perform

well on the training set but is not able to generalise properly for new instances, the

model is overfitting. Finally, the blue curve captures the overall trend of the data while

remaining simple enough. The model performs adequately on the training set and will

generalise well for new instances.
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2.10 Interpretablity of machine learning models

2.10.1 Background

Apart from making predictions, machine learning can derive insights, identify

relationships between input variables, and/or find patterns in the data that may be

hidden from conventional analysis (Lee, 2018). Depending on the aim and purpose

of the machine learning model, obtaining correct prediction only may be satisfactory.

Recommender systems are an example where the emphasis is cast on the results

(recommendations) rather than on the paths that led to it. However, recent applications of

machine learning showed that interpretability could help the end-user (Honegger, 2018).

Human interpretability of the predictions is closely related to model trust (Miller, 2019).

Opacity in the way predictions are made often leads to mistrust in the model, making its

application, implementation and acceptance more difficult (Molnar, 2020).

Model interpretability is achievable in two main ways. It could come from the

possibility for humans to understand the parameters of the algorithm (intrinsic

interpretability). This is for example the case for linear regression which remains

interpretable due to its simple structure. Table 2.2 shows a list of intrinsically

interpretable models. They are sometimes called ‘white-box models’as they are

relatively straight forward to be understood by humans. However, many current ML

algorithms are too difficult to be directly interpreted by humans. For example, it is

not straightforward to rationalise the actions and decisions of artificial neural network

(ANN) models. Moreover, the best performing models can be a combination of multiple

algorithms (ensemble models) making the prediction process even more complicated to

follow. Models that are not easily understood by human are referred to as ‘black box

models’. For complex models, interpretability could come from methods that analyse the

machine learning model after it has been trained (post hoc methods). Developing post

hoc solutions to make complex model decisions understandable to humans remains a

topical research endeavour (Du et al., 2020; Molnar, 2020; Ribeiro et al., 2016a, 2016b,

2018).



Interpretablity of machine learning models 55

Table 2.2: List of some intrinsic interpretable machine learning algorithms, after (Molnar,
2020)

Algorithm Linear Monotone Interaction Task

Linear
regression

Yes Yes No regression

Logistic
regression

No Yes No classification

Decision trees No Some Yes classification and
regression

Naive Bayes No Yes No classification

k-nearest
neighbors

No No No classification and
regression

2.10.2 SHapley Additive exPlanations (SHAP)

SHAP is a methodology originally conceived in game theory for computing the

contribution of model features to explain the prediction of a specific instance (Lundberg

& Lee, 2017). The SHAP methodology has latter been extended to the interpretation of

tree-based machine learning algorithms (Lundberg et al., 2018). It can be used to rank the

importance of the model features.

The permutation of features is another technique used to find the importance

of features in tree-based models. The feature importance is determined through the

influence on the model prediction error of the feature’s values permutation. A high

model prediction error indicates a feature with significant importance. To be able to rank

the features by importance, the process is repeated for each feature in the model (Fisher

et al., 2018).

SHAP relies on the weight of feature attribution rather than on the study of the

decrease in model performance. It is thus more robust than the feature importance using

permutation (Lundberg et al., 2018; Molnar, 2020).

Figure 2.29 presents an example of a SHAP summary plot showing the feature

importance for the Census income data set. The Census Income data set, obtained from

the UCI machine learning repository (Dua & Graff, 2019), entails demographic data and

information whether a person makes less or more than US$50k annually. Lundberg et

al (2020) used twelve attributes, numerical and categorical, to train a ML model using

gradient boosting (LightGBM). SHAP was then applied on the ML model to obtain the
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Figure 2.29: Feature importance computed using SHAP (Lundberg, 2020)

feature importance. The attributes “relationship”, “age,” and “capital gain” stood out as

the most significant, impacting the most the likelihood of a person to make more than

US$50k per year.



CHAPTER 3
Development of a universal damage

data collection framework

This chapter proposes a new paper-based tool which addresses the need for a global

yet detailed universal methodology for building damage assessment post-earthquakes.

Currently, to make use of the data sets from around the world, significant effort is

required to decode the data which often have unique local and regional context and bias.

The struggle beings at data collection where there is a lack of consistent methodology

and definitions that can adequately cover the regional nuance. This new form is based

on the GEM taxonomy v2.0 and the European Macroseismic Scale EMS-98 and is flexible

enough to be used anywhere in the world.

The recent Puebla earthquake on 19th September 2017 led to significant building

damage in Mexico City and the state of Morelos. A team from New Zealand assessed

damage throughout the capital and trialled the new paper form along a significantly

affected street, Calle La Morena. This chapter presents the case study which showcase

the use of a comprehensive damage data and buildings characteristics visualisation. This

highlights the correlation between the damage and the building features, and leads to

better comprehension of the damage drivers.

57
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3.1 Introduction

One of the earliest contemporary earthquake reconnaissance and observation for

scientific account was that by Robert Mallet (1810-1881). Mallet spent one month in

Italy following the 1857 great Neapolitan earthquake (Ferrari & Mcconnell, 2005), and he

collected meaningful data and documented his finding in the report “The first principles

of observational seismology” (Mallet, 1862). Approximately fifty years later, the U.S.

experienced one of the worst natural disasters in its history with the 1906 San Francisco

earthquake. The earthquake and following fire killed more than 3,000 persons and left

400,000 persons homeless (The U.S. National Archives and Records Administration,

2017). More importantly, before the event, San Francisco was the premier city of the

West Coast. After 1906, population abandoned San Francisco, and Los Angeles quickly

outgrew San Francisco in the following decade. Los Angeles is now the financial centre

of California and is five times as large as San Francisco (Jones, 2014). The San Francisco

earthquake and other significant earthquakes such as the 1923 Kanto and 1995 Kobe

Earthquakes highlighted the importance of the economic and social consequences of

earthquake disasters. It pointed to the need for improving the resilience of our cities

and urban environment.

Purpose of modern earthquake engineering is to mitigate damage in buildings and

infrastructures to reduce the impact of earthquakes on society. Earthquake risk reduction

is a multidisciplinary risk management exercise and is not restricted to improving the

science behind more accurate seismic hazard prediction. It encompasses enhancing

the understanding of the exposure and vulnerability of our built environment. Then,

applying appropriate risk management measures such as Avoid-Control-Accept-Transfer

to minimise the related losses. Earthquake risk reduction requires knowledge from

seismology, structural and geotechnical engineering as well as psychology and

economics. The most valuable resource in damage mitigation and loss prediction

for future earthquakes is empirical data and lessons from past events. In structural

engineering fields, the perishable building performance data on damage and undamaged

buildings are invaluable in identifying failure causes and damage patterns. These

observations can enable engineers, planners and officials to adjust the current setting
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to improve future social and economic outcomes. The most direct lever for this is via

improving structural design standards and seismic loss prediction models.

3.2 Improved paper form based on the GEM Building

Taxonomy v2.0

The improved post-earthquake building damage assessment form (herein noted as the

form) proposed by this project was designed with universal applicability in mind, in line

with the GEM objective. Care was taken to develop a standard and consistent definition

of building features to ensure past, current and future data are comparable. It is the first

damage assessment form that combines and aligns the GEM Building Taxonomy v2.0

(Brzev et al., 2013) and EMS-98 (Grünthal, 1998) in one paper form. While the European

Macroseismic Scale EMS-98 was primarily developed for European countries, engineers

used the EMS-98 damage scale to assess building damage all over the world: in Italy

(Borg et al., 2010; Del Gaudio et al., 2017), in France/Spain (Monfort et al., 2011), in

Mexico (Juarez-Garcia et al., 2004), in New Zealand (Cattari et al., 2015; Fikri et al.,

2018; Stirling et al., 2015). The GEM Building Taxonomy is appropriate to consistently

describe and classify buildings worldwide (L. Allen et al., 2015). It was already employed

in several projects (Global Earthquake Model (GEM), 2015; Silva et al., 2018; Wieland

et al., 2015). Unlike most existing damage survey forms, the newly developed paper

form allows for the collection of non-structural components seismic performance data. It

combines the nonstructural damage observation form developed by (Taghavi & Miranda,

2003) and the non-structural building components taxonomy developed by Porter (2005).

It includes informative sketches on the type of seismic design obtained from the glossary

of GEM taxonomy (L. Allen et al., 2013) to facilitate the assessment of the structural

system. A copy of the paper form is included in Appendix B.3.

The improved paper form comprises of six mains sections.

• Section one collects information on the assessor and general building information

such as building location (address and GPS coordinates).

• Section two records building information: type of occupancy, number of stories,

building position within a block, date of construction, building shape.
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• Section three records the general description of building damage including location

and extent based on the EMS-98 (Grünthal, 1998). This section has been deliberately

placed on the first page to facilitate the data post-processing and directly enable to

identify the level of damage without having to go through the entire form. This

section also introduces essential definitions that assist the assessment of building

elements.

• Section four focuses on structural elements. It records details about the building

material and the lateral-load resisting system (LLRS) in each direction, and any

structural irregularity in the structure (plan and vertical).

• Section five records information on the building exterior attributes (e.g. roof,

façade), flooring systems, foundation system and ground condition.

• Section six is dedicated to recording observations on non-structural components

and some building content. A space is reserved on the final page for a sketch of

the building and it prompts the assessor to record reference and captions for any

photographs taken.

3.2.1 Field trial of the improved paper form

An international Learning From Earthquake (LFE) team trialled the improved form

on site in Mexico City following the 19th September 2017 Puebla earthquake. The

team included local and foreign researchers, graduate and undergraduate students. The

experience in deploying the improved paper form was generally positive. It recorded

greater detail on the building and the damage, it enabled consistent damage grading

and was commented to be easy to use. The definition of the building damage according

to EMS-98 was well received and understood by local assessors, as this was also used in

other local efforts. One of the advantages of EMS-98 is that the documents are available in

full and short form in English, French, Spanish, and Chinese (Grünthal, 1998). Experience

in the field showed that training is necessary for assessors to become familiar with

assessment forms. The alignment of the new paper form with GEM taxonomy also made

the reporting of the information in GEM – Direct Observation Tools (Jordan et al., 2014)

straightforward.
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The new form was designed with an emphasis on non-structural components,

to collect empirical data on the seismic performance of non-structural components.

However, the experience from the field trial is that internal inspection is not always

possible due to difficulties in obtaining access to private properties, the limited time

available and other health and safety concerns. An alternative and refinement for future

missions could be to send a questionnaire on non-structural components to owners of

damaged building. Previous research showed that satisfactory results could be achieved

if the form is self-explanatory (Taghavi & Miranda, 2003).

3.2.2 Future improvements

Assessors appreciated the simplified sketches depicting damage and structural

categories included in the form. Some assessors suggested more pictures and

complementary explanation to be included in the paper form (e.g. explanation on short

columns, cripple walls, torsional eccentricity). Future refinement will need to consider

the trade-off between improved explanation and increasing the form length. Version

1.2.0 of the IDCT Android app (March 2018) was available in Spanish. Translation of

the paper form into Spanish and other languages used in earthquake-prone countries

is recommended and could make the assessment process more accessible. Due to

internal access difficulty mentioned previously, it may be argued that the non-structural

components section in the current form should be reduced to recording obvious and

critical non-structural component damage.

The table in Appendix C.2 shows a detailed comparison of the features of the

assessment form based on the GEM Building Taxonomy v2.0 versus the local form

used in Mexico. A significant advantage of the paper form based on the GEM Building

Taxonomy v2.0 is the direct integration in the GEM data type. Any assessments

completed with the IDCT tool produce outputs that are consistent with the data required

for the GEM exposure and consequences databases, and thus directly usable by any

software and tool developed by the GEM community (Global Earthquake Model (GEM),

2014; Pagani et al., 2014). Interested readers about the possibilities of GEM tools are

directed to The OpenQuake-engine User Manual (Pagani et al., 2019) as well as the

OpenQuake Risk Modeller’s Toolkit - User Guide (Global Earthquake Model (GEM),
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2018). The broad terminology of GEM Building Taxonomy gives high flexibility in

attribute definitions. The scope goes beyond the building industry and is transferable

for loss calculation and estimation for the insurance industry.

3.3 Case study: Calle La Morena

3.3.1 Building assessment

The assessors conducted detailed inspections on twenty-five buildings in the western

part of Calle La Morena. These inspections formed a representative case study for

buildings with broad variations of features and wide extent of damage ranging

from no damage to total collapse. The buildings are located in the geotechnical

zone III a (Gobierno del Distrito Federal Mexico, 2004), south of the most damaged

neighbourhoods of La Condesa and La Roma. It was not possible to access the

inside of the buildings thus the assessments were limited to exterior inspections

only. Nevertheless, the exterior inspections provided meaningful data on the building

characteristics and extent of damage of the structural elements. In the Calle La Morena,

the building assessor assessed damage with the improved GEM paper tool. The assessor

then transferred the data in a digital form using the GEM Windows tool (Jordan et al.,

2014), as shown in Figure 3.1a. The software links the damage assessment as well as

photographs taken on site to a geotagged data point, which can be exported as a kmz file

(Figure 3.1b) or as a .shp - Shapefile.

3.3.2 Statistical findings

Figure 3.2b shows the overall damage extent distribution for the assessed buildings, and

Figure 3.2c presents the same distribution as categorised by number of storeys. Out of the

twenty-five buildings assessed, fifteen suffered no damage, ten experienced at least slight

damage and one building collapsed. The damage scale followed EMS-98, and a consistent

colour code was used for all subsequent graphs in this chapter. The colour code ranged

from beige for buildings with no damage to dark red for collapsed buildings.

Figure 3.3 plots the damage grade distribution categorised by the number of stories

and building occupancy. It shows that five to eight storeys building were the most
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Figure 3.1: Screenshots of the GEM IDCT software. (a) Depicting building boundaries as
available from shapefiles. (b) Location of the 25 buildings assessed.
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Figure 3.2: Distribution of damage categories for the 25 buildings studied in Calle La
Morena. Damage categories as per EMS-98.

severely damaged. Of the assessed buildings, 60% are residential (RES) and 36% are

mixed-used, mostly residential and commercial (MIX1).

Buildings are classified into bins according to their plan shape and their position as

per the GEM Building taxonomy definitions in Figure 3.4. 84% of the buildings assessed

had two adjoining structures and 16% have adjoining building on one side only. The

plan shape observed in Calle La Morena Street were diverse. Whilst conclusive statement

cannot be made due to the small sample size, it appears buildings with a solid rectangular

plan suffered the least damage. By contrast, H-shaped buildings experienced very heavy

damage.

Figure 3.4 depicts the damage grade distribution classified by building material and

lateral load resisting system. In the case study sample, 50% of the building are concrete

buildings and 10% are masonry buildings. In 40% of the cases, it was not possible to

determine the material of the structural elements. It was even more challenging when

attempting to identify the lateral load resisting system in the field. Overall, it was not

possible to identify the lateral load resisting system for 70% of the buildings in the case

study. Like other reconnaissance missions, this experience highlighted the difficulty in

obtaining accurate classification from external observations. This is oftentimes made
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IND  Industrial             MIX  Mixed use                                             RES  Residential
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                                                                                                              RES2A  2 Units (duplex)    RES2C  5-9 Units     RES2E  20-49 Units

Occupancy/Number of storeys above ground

Figure 3.3: (a) Building categorized by occupancy and number of storey. (b) Detail of the
building occupancy.

more difficult with the lack of official authority of scientific data collection teams and

health and safety concerns. The difficulty of defining the building structural system and

material of the structural elements from external observation increases the inaccuracy

and variability in the data. Having access to building plans would significantly improve

the situation. For some buildings in Mexico City outside the scope of this case study,

building plans and structural drawing were available. For most of these cases it was

possible to determine the structural system and the material of the structural elements.

This highlights the importance of preparation and collecting inventory data prior to a

disaster, and archiving them so that the information is accessible immediately after a

shock event.

Heavy damage and collapse, damage grades 3 to 5, were concentrated in buildings

with an irregular structure (see Figure 3.6). For those buildings with an irregular

structure, Figure 3.7 details the type of building irregularity observed in the vertical and

horizontal directions. Figure 3.7a highlights that irregular buildings with a soft-storey
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Adjacent buildings Plan shape

Plan shape/Adjacent buildings

POSITION (GEM Building Taxonomy v2.0)     PLAN_SHAPE (GEM Building Taxonomy v2.0)
BP1  Adjoining building(s) on one side                PLFR Rectangular, solid    PLFL  L-shape    PLFRO  Rectangular, with an opening in plan
BP2  Adjoining building(s) on two sides              PLFI  Irregular plan shape   PLFH H-shape   PLFU U- or C-shape   PLFSQ  Square, solid

Figure 3.4: Damage grade distribution categorised by adjoining buildings and plan
shape. (a) Configuration of adjoining buildings. (b) Plan shape of each building.
(c) Combination of plan shape and building position.

suffered larger damage. Figure 3.7b shows that higher damage grades are also linked to

buildings having torsion eccentricities and re-entrant corners.

3.3.3 Examples of observed damage

The LFE mission provided excellent opportunity to observe many common classic

building failure mechanisms. Figure 3.8 presents a collection of noteworthy examples.

Figure 3.8a depicts an example of a corner building with torsion eccentricity. The

collapsed building had a re-entrant corner (REC). From our limited case study samples,

all substantial and heavily damaged buildings exhibited torsion issues. 30% of the

vertically irregular structures experienced pounding (POP) (an example is shown in

Figure 3.8b) and 60% had soft story (SOS) failure (an example is shown in Figure 3.8c).

During the assessment following the Puebla earthquake, the team saw several cases of

failed columns. Assessors observed shear cracks, as shown in Figure 3.9a or total column
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Figure 3.5: Damage grade distribution categorised by adjoining buildings and plan
shapes. Material of structural system in (a) longitudinal direction and (b) transversal
direction. Lateral Load Resisting system in (c) longitudinal direction and (d) transversal
direction.
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Figure 3.6: Distribution of damage for regular and irregular structures
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REC     Re-entrant corner

Figure 3.7: Distribution of damage for irregular structures. Principal (a) vertical and
(b) horizontal irregularities. Secondary (c) vertical and (d) horizontal irregularities.

failure with longitudinal reinforcement bar buckling due to insufficient confinement

from widely spaced stirrups (Figure 3.9b).
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Figure 3.8: Representative damage in La Morena. (a) Corner building with torsion
eccentricity. (b) Pounding failure. (c) Soft storey in the ground floor.

Figure 3.9: (a) Failure of the column in shear. (b) Buckling of the longitudinal
reinforcement bars.
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3.4 Conclusion

Following the 2017 Puebla earthquake in Mexico, a new paper form based on the GEM

Building Taxonomy v2.0 was trialled on twenty-five buildings in Calle La Morena.

Each category has a clear structure aligned with the GEM Building Taxonomy v2.0

and the damage grade is expressed according to the European Macroseismic Scale

EMS-98 (Grünthal, 1998). The form also included indicative building feature sketches

and explanation of the damage grades to aid the assessors in the identification of the

structural system.

The buildings assessed were diverse by their number of stories, structural systems,

occupancy, and position in a block. Building assessors collected relevant building

characteristics such as the number of stories, the building occupancy, the position of

the building, and the damage grade. Building damage ranged from no damage to total

collapse.

The trial using the new form based on the GEM Building Taxonomy v2.0 was

generally positive. Experience gathered in the field showed that the definition of building

features according to the GEM taxonomy provided consistency in the data collected.

The new form simplified the data extraction as data were easily exported into a GEM

framework. The GEM structure simplifies the universal understanding while allowing

for regional specificities.

Earthquake reconnaissance missions provide critical data for improving damage

predictions models and quantitative insight into actual building performance. This

case study is of interest to understand the factors and correlation of factors leading to

vulnerability. This is assisted by visualising the damage distribution data individually

by each building characteristic. The case study also highlighted the varying seismic

performance of buildings located in close proximity with similar seismic demand.



CHAPTER 4
Development of a machine learning

model for building damage

prediction in the Roma and Condesa

neighbourhoods - Mexico City ,

Mexico

This chapter presents the development of a seismic damage prediction model for

the Roma and Condesa neighborhoods using machine learning techniques. It details

a framework suitable for working with future post-earthquake observation data.

The machine learning model uses building damage information collected following

the 2017 Puebla, Mexico earthquake event and structural characteristics from 237

buildings located in the Roma and Condesa neighbourhoods in Mexico City. These

neighbourhoods are of particular interest due to the availability of seismic records

captured by nearby recording stations, and detailed historic information from when the

neighbourhoods were affected by the 1985 Michoacán earthquake.

This chapter investigates four algorithms for machine learning classification. Random

forest was found to be the best performing algorithm, achieving a 67% prediction

accuracy. The study of feature importance for the random forest reveals that the building

71
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Figure 4.1: Localisation of historical seismic events in Mexico (Servicio Sismológico
Nacional (SSN), 2017)

location, seismic demand and building height, in descending order, influence a building

post-earthquake outcome the most.

4.1 Introduction

On Tuesday, 19 September 2017, at 1:14 pm local time (18:14:38 UTC) a magnitude

Mw 7.1 earthquake struck the central part of Mexico (United States Geological Survey

(USGS), 2017). The epicenter of this intraplate earthquake was located approximately

120 km away from downtown Mexico City (Jaimes, 2017) as shown in Figure 4.1. The

combination of a strong and deep earthquake at a moderate distance with a soft soil basin

led to severely damaged building in Mexico City (Mayoral, Asimaki, et al., 2019). The

2017 Puebla Mexico earthquake occurred on the exact anniversary of the 1985 Michoacán

earthquake. On 19 September 2017, the earthquake early warning alarm went off twice,

once for the annual drill at 11:00 am and the second for the earthquake warning at 1:14

pm local time (R. Allen et al., 2017).

Following the earthquake, locals and international teams assessed buildings damage

across Mexico City (Colegio de Ingenieros Civiles de México (CICM), 2017b; Díaz et al.,

2017; Galvis et al., 2017; Roeslin et al., 2020; Roeslin et al., 2018; Weiser et al., 2017).
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Figure 4.2: Location of the CIRES recording stations (Centro de Instrumentación y
Registro Sísmico (CIRES), 2017) over a map of Mexico City

4.2 Soil characteristics and seismic recording in Mexico

In 1985 prior to the Michoacán earthquake, there were nine recording stations operating

in Mexico City (Gomez-Bernal & Saragoni, 2002). The Mexican government has since

expanded and upgraded the strong motion recording network, and at the time of the 2017

Puebla earthquake, the Mexican Instrumentation and Seismic Record Center operated

61 stations (Figure 4.2). The raw data of the accelerograms are publicly available online

(Centro de Instrumentación y Registro Sísmico (CIRES), 2017).

Mexico City is well known for its basin site effect due to its geological formation

origins (Mayoral, Asimaki, et al., 2019). A summative source of information on the local

soil condition is the local building code. The code entails six different geotechnical zones

based on the characteristics: Firm Zone (Zone I), Transition Zone (Zone II), Lakebed Zone

(Zones III a, b, c and d) (Gobierno del Distrito Federal Mexico, 2004).
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Figure 4.3: Preliminary classification of inspected structures according to the level of
damage, after (Colegio de Ingenieros Civiles de México (CICM), 2017a)

4.3 Building damage and damage distribution

The 19 September 2017 Puebla earthquake induced significant building damage in

Mexico City and led to the collapse of 46 buildings (Galvis et al., 2017). Engineers from

the Colegio de Ingenieros Civiles de Mexico (CICM) assessed 1,997 buildings throughout

Mexico City. As shown in Figure 4.3, 23% of the buildings presented a high risk due

to structural damage (Colegio de Ingenieros Civiles de México (CICM), 2017a). EERI’s

Building Damage Sampling Team (BDST) conducted damage survey for 713 damaged

and undamaged buildings, located around recording stations. Statistics show that severe

damage was concentrated in buildings having 4 to 8 stories above ground. Buildings with

concrete frame and masonry infill were the most affected. The BDST observed significant

variations in the damage state of buildings subjected to the same seismic demand

thus emphasizing the influence of the building structural and geometric characteristics

(Weiser et al., 2017). The Puebla-Morelos earthquake also pointed the deficiencies of

buildings constructed prior to the 1987 change in design code (Colegio de Ingenieros

Civiles de México (CICM), 2017a; Weiser et al., 2017). Different ground conditions and

soil periods led to significant variations in the damage state of buildings throughout

Mexico City. Building damage was characterized by the importance of local site effects

which led to an increase in the seismic demand for building with structural periods

between 0.8s and 1.6s (4 to 8 stories in height) (Mayoral, Asimaki, et al., 2019).

In addition to the broad building surveys by the local authority, an university UAM

Azcapotzalco, Mexico City team conducted detailed block-by-block building damage

surveys of over 300 buildings (237 within Roma and Condesa neighbourhoods), with

level of damage recorded against the European Macroseismic scale EMS-98 (Grünthal,
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Figure 4.4: Damage severity of the surveyed buildings located in the Roma and Condesa
neighborhoods

1998). These surveys collected detailed building data based on a streamlined taxonomy

specific to the local building stock. Thus to enable comparison and potential combination

to observations from other events worldwide, the raw building information were

converted and aligned to the GEM Building Taxonomy v2.0 (Brzev et al., 2013; Roeslin

et al., 2018). The GEM Building Taxonomy v2.0 was chosen as it is flexible and has been

designed to accommodate local variations sensitively worldwide (L. Allen et al., 2015).

Figures 4.4 and 4.5 present damage statistics generated using the data collected by

the UAM team in the Roma and Condesa neighborhoods. Figure 4.4 shows that 50%

of the building assessed experienced slight damage, 28% moderate damage, and 22%

substantial damage and above. Figure 4.5a shows buildings categorized by the number

of storeys. It can be seen that 88% of the buildings assessed were lower than ten storeys.

Figure 4.5b gives the building year. Unfortunately, the construction year is unknown for

almost two-fifth of the buildings. Nevertheless, for the 144 buildings with information

on the date of construction or retrofit, 94% were constructed before 1985. Figure 4.5c

and 4.5d present the buildings categorized by material type and lateral load resisting

system (LLRS), respectively. Most of the buildings assessed had reinforced concrete main

structural system, but similarly as it was described in chapter 3, information on LLRS is

difficult to establish and in this case it was missing for most than half of the buildings

assessed.

Figure 4.6 shows a map of the surveyed buildings in the Mexico City urban area. The

survey focused on the Roma and Condesa neighborhoods (Figure 4.7a and Figure 4.7b),

as firstly, building damage was densely concentrated in these areas, and secondly these

areas had been subjected to ongoing work and scrutiny since 1985 (Arellano-Mendez

et al., 2004)). The new data would enable verification of existing seismic vulnerability
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Figure 4.5: Statistics on the UAM building damage database: categorised by (a) number
of storeys, (b) construction year, (c) material type, (d) lateral load resisting system

assessments, enable comparison on the efficacy of various policy interventions, and

provide valuable data on the effectiveness of different seismic retrofit techniques.

4.4 Machine learning model development

The approach for the development of a machine learning damage prediction model for

this study follows the framework suggested by Géron (2019), as depicted in Figure 2.20

in section 2.6.5.

4.4.1 Problem framing

The objective is to develop a machine learning model to estimate seismic building

damage in the Roma and Condesa neighbourhoods in Mexico City. The machine

learning model is trained on merged data, including building damage obtained from

post-event observations and seismic demand from recording stations, making the model

development a supervised learning problem.
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Figure 4.6: Locations of the buildings assessed by the UAM team superimposed over a
map of the geotechnical zones of Mexico city

4.4.2 Data collection

Before the development of the machine learning model, it is essential to understand

and be familiar with the data available. Figure 4.4 presents an overview of the damage

distribution for the 237 buildings located in the Roma and Condesa neighbourhoods. The

raw database includes the following features:

• the building location (latitude and longitude),

• the damage state of the building according EMS-98,

• the construction material,

• the type of lateral load resisting system,

• the floor system type,

• the number of stories above ground,

• the date of construction or retrofit, and

• information about the presence of any plan irregularity.
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(a) By damage grade

(b) By number of stories

Figure 4.7: Buildings assessed by the UAM team in the Roma and Condesa
neighbourhoods
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Table 4.1: PGA and max spectral acceleration for the CIRES stations

Station Geotech.
zone

max SA
N00E

[g]

max SA
N90W

[g]

PGA
N00E

[g]

PGA
N90W

[g]

Average
PGA [g]

BA49 IIIc 0.653 0.436 0.091 0.116 0.103

BL45 IIIb 0.335 0.394 0.105 0.117 0.111

CI05 IIIb 0.486 0.475 0.116 0.117 0.116

CJ03 IIIb 0.471 0.574 0.114 0.100 0.107

CJ04 IIIb 0.464 0.568 0.127 0.099 0.113

CO56 IIIb 0.453 0.337 0.112 0.117 0.114

ES57 IIIa 0.306 0.335 0.072 0.086 0.079

LI58 IIIb 0.367 0.417 0.098 0.092 0.095

MT50 I 0.188 0.270 0.048 0.060 0.054

UC44 IIIa 0.396 0.489 0.128 0.128 0.128

AL01 IIIb 0.361 0.374 0.120 0.111 0.115

However, not all features are always recorded for each data entry and procedures to

address these are explained in section 4.4.4 on data preparation.

A key input for the machine learning model is the seismic demand that each building

experienced leading to the damage observed. For the model development, this study

utilises spectral acceleration as the main parameter to characterize the seismic demand

on buildings. Nevertheless, PGA is included as well so to ascertain its relevance and

importance in the final machine learning model. Table 4.1 shows the PGA and max SA

values recorded at the CIRES strong motion stations located near the area of interest. As

the orientation of the main resisting building frames is unknown or is not recorded, it is

not possible to identify the governing earthquake component. Thus, the average of the

north-south (N00E) and East-West (N90W) component PGA are adopted for this study.

Figure 4.8 shows PGA values for the area of interest. The values have been derived using

an inverse distance weighted (IDW) interpolation. It can be seen that that PGA is highest

around station CI05.

From a structural dynamic standpoint, the seismic demand depends on the

interactions of a building’s dynamic characteristics, the site condition, and the magnitude
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Figure 4.8: Inverse distance weighted (IDW) interpolation of the PGA values between the
CIRES recording stations

and frequency content of the ground motion. A simple approach to account for this is to

characterize the ground motion by its response spectrum, and quantifying the interaction

by a building’s corresponding first mode spectral acceleration.

To achieve this for the dataset, the raw accelerograms from CIRES were filtered

and processed to obtain the response spectrum for each ground motion station. To

estimate the dynamic characteristics for the 237 buildings in the Roma and Condesa

neighbourhoods, the buildings’ fundamental natural periods were estimated using the

empirical formula developed by Muria-Vila and Gonzalez-Alcorta (1995) for the Mexican

building stock. This is shown in Equation 4.1. This simple equation only requires the

number of stories and the building structural system type, both of which are available

from the post-earthquake detailed building surveys.

T1 = a ∗ N (4.1)

where: T1 is the fundamental period of vibration of the building

a is a coefficient taken from Table 4.3

N is the number of storeys above ground.
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Table 4.3: Coefficient a for building period T1 in Mexico City, after (Muria-Vila &
Gonzalez-Alcorta, 1995)

Building type Firm soil Soft soil

Frames 0.100 0.126

Frames and walls 0.063 0.102

Masonry 0.040 0.073

An illustrative example of this process for a 12 storeys building is shown in Figure 4.9.

It was not possible to define the natural period for 19 buildings in the dataset due to the

insufficient information regarding their structural system and material.

4.4.3 Data exploration

After the inclusion of additional information from other databases as explained in

the previous section, it results in fifteen features for model development as shown in

Table 4.5.

4.4.4 Data preparation

The UAM team assessed building damage according to the EMS-98 five-step scale, from

negligible to slight damage (category 1) to destruction (category 5). Indicative guidance

on the interpretation is shown in Figure 4.10 as it appeared in the data collection form

provided to the assessors. Figure 4.11a shows that the upper classes occur infrequently

leading to a class imbalance and difficulties for the machine learning model to accurately

learn for classes 2 to 5 as the number of occurrence in each class is very limited.

First versions of the model aiming to predict five damage classes led to unsatisfactory

model performance. Thus, the data was pre-processed with categories 2, 3, 4, and 5

combined in a common category. This left the damage prediction as a binary target

where “0” represents negligible to slight damage and "1” moderate damage and above

(Figure 4.11b).

Figure 4.12 shows the pair-plots between selected numerical variables. From the

plots, it can be seen that the the natural period is predictably highly linearly correlated
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Figure 1: Step to derive the seismic demand for each building 
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Figure 4.9: Steps to derive the seismic demand for each building
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Table 4.5: Features present in the final dataset (after addition of supplementary
information)

Feature name Feature Source Feature type

Building Building address Collected on site Text

Latitude Building latitude Extracted from
building address

Numerical

Longitude Building longitude Extracted from
building address

Numerical

Damage EMS98 Damage EMS 98 Assessed on site Categorical

MAT TYPE Material type Observed on site Categorical

LLRS Type of lateral
load-resisting
system

Observed on site Categorical

FLOOR TYPE Floor system type Observed on site Categorical

STORY AG Number of storeys
above ground

Observed on site Numerical

YR BUILT Date of
construction or
Retrofit

Observed on site Numerical

STR HZIR P Plan irregularity Observed on site Binary

Geotech Zone Geotechnical zone Extracted from
2004 Mexico
design codes

Categorical

Natural period
(calculated)

Building natural
period (s)

Calculated based
on Equation 4.1

Numerical

Ts (from SASID
website)

Site period Obtained from
website

Numerical

PGA
(interpolated)

Peak ground
acceleration

Interpolated, based
on CIRES data

Numerical

SA (from similar
station)

SA(T1) Spectral
acceleration of T1
for the structure

Obtained from a
CIRES station

Numerical
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16

Classification of damage to  buildings of reinforced concrete
Grade 1: Negligible to slight damage

(no structural damage,
slight non-structural damage)
Fine  cracks in plaster over frame members
or in walls at the base.
Fine cracks in partitions and infills.

Grade 2: Moderate damage 
(slight structural damage,
moderate non-structural damage)
Cracks in columns and beams of frames
and in structural walls. 
Cracks in partition and infill walls; fall of
brittle cladding and plaster. Falling mortar
from the joints of wall panels.

Grade 3: Substantial to heavy damage
(moderate structural damage,
heavy non-structural damage)
Cracks in columns and beam column joints
of frames at the base and at joints of
coupled walls. Spalling of conrete cover,
buckling of reinforced rods. 
Large cracks in partition and infill walls,
failure of individual infill panels.

Grade 4: Very heavy damage
(heavy structural damage, 
very heavy non-structural damage)
Large cracks in structural elements with
compression failure of concrete and
fracture of rebars; bond failure of beam
reinforced bars; tilting of columns.
Collapse of a few columns or of a single
upper floor.

Grade 5: Destruction
(very heavy structural damage)
Collapse of ground floor or parts (e. g.
wings) of buildings.

Figure 4.10: Detailed description of the damage grade (Grünthal, 1998)
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Figure 4.11: (a) Number of training data point available as five damage classes; (b) Data
points distribution after transforming target feature as a binary damage class

with the number of stories. This correlation is confirmed by a high Pearson correlation

coefficient as shown in Figure 4.13. Thus, the feature ‘Natural period(calculated)’ is

removed as justified in section 2.7.2.

An important step of data exploration is also to review the quality of the data,

especially missing values. Figure 4.14 highlights the availability of the different features

across the 216 buildings. Table 4.6 presents a detailed overview of the available instances

and missing values for each variable. Upon scrutinizing the result, 115 (53%) buildings

do not have Lateral Load Resisting System (LLRS) data, 79 buildings (37%) are missing

construction year (YR BUILT) data, and 67 buildings (31%) are missing floor type

(FLOOR TYPE) data. Thus, with over 50% of the dataset missing the LLRS values, a

decision was made to remove it from the model.

Common feature engineering methodologies to fill-up missing construction year and

type of floors were trialled. This included back-fill or forward-fill, replacement with

the mean, use of the median or mode, and even the training of a machine learning

model (k-nearest neighbours). If none of the solutions provides a satisfactory output,

the instances with missing value can be taken out if sufficient data remain available

in the database. A machine learning model using k-nearest neighbours was trained to

fill-up missing values for the construction year. And missing building year information

could be guessed through expert knowledge. However, none of the fill-up techniques

improved the overall model prediction accuracy, and it risks introducing bias in the

dataset. Consequently, construction year and type of floors were removed from the model
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Figure 4.12: Pair plots showing the relationship between the variables: number of stories,
natural period, PGA, and SA. The hue represents the damage grade

in favour of maintaining the integrity of the modelling process.

Our processed database ultimately had five numerical features: ‘Latitude’,

‘Longitude’ ‘Damage EMS 98 (target feature)’, ‘STORY AG’, ‘SA’ and three categorial

features: ‘MAT TYPE’, ‘STR HZIR P’, ‘Geotech Zone’. One-hot encoding was applied to

the three categorical features. This led to four binary variables/columns for material type

(concrete, masonry unreinforced, masonry confined, masonry reinforced), two for torsion

eccentricity (no torsion, torsion) and three for the geotechnical zone (Zone II, Zone III

a, Zone III b). The results are shown graphically in Figure 4.15. However, converting n

categories to n binary columns leads to unnecessary redundant information, in other

words, the state of the final column can be inferred by the values of the other columns in

the same grouping. Thus, one category per feature was removed leaving n-1 columns to

improve performance and the prediction accuracy of the algorithm.
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Figure 4.13: Pearson correlation coefficient before pre-processing of the database

Figure 4.14: Graphical representation of missing values (on the raw database)
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Table 4.6: Number of values available for each feature

Features # of records # of missing values % of missing values

Building address 216 0 0%

Building latitude 216 0 0%

Building longitude 216 0 0%

Damage EMS98 216 0 0%

Material type 216 0 0%

Type of lateral load-resisting system 101 115 53%

Floor system type 149 67 31%

Number of storeys above ground 216 0 0%

Date of construction or Retrofit 137 79 37%

Plan irregularity 216 0 0%

Geotechnical zone 216 0 0%

Peak ground acceleration 216 0 0%

Seismic demand – Spectral acceleration 216 0 0%

Figure 4.15: Overview of categorical features after one-hot encoding

Before training a model, it is important to split the data and leave a part of the data

untouched that can later be used to evaluate the prediction accuracy of the model on

previously unseen data. Two sets, a training set and a testing set were created. The

database of 216 buildings was split in 75% / 25% thus having 162 and 54 in the training

and testing set respectively.

4.4.5 Model selection and training

For this study, the aim of the machine learning model is to predict possible damage for

new input data (features). The collected building damage data entails both the features
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(building and seismic characteristics) as well as the target (building damage), thus

leading itself as a supervised learning problem. Logistic regression, SVM, decision trees,

and random forests are algorithms that are suitable to perform supervised classification

tasks. The process of the model fitting to the training set was realised using built-in

function from scikit-learn (Cournapeau, 2007).

While the target prediction is important, the ‘decision process’ or path taken by the

algorithm to classify the damage state of the building is also of interest. This favoured

logistic regression and decision tree as they are intrinsic interpretability. SVM and

random forest algorithms, while not intrinsically interpretable, were nonetheless trialled.

Random forest algorithm was eventually chosen as the algorithm for this study as it

provided the best predictive performance. To allow for human model interpretation and

the look-through characteristics, we applied post-hoc interpretation methods to extract

feature importance.

4.5 Model prediction

4.5.1 Prediction performance

Table 4.7 presents the prediction performance in terms of precision, recall, F1 score,

and overall model accuracy for the four algorithms trialled. Random forest model

delivered the best prediction accuracy followed by decision tree. The random forest

model achieved an F1 score of 0.65 for the category 0 and 0.68 for the category 1, with a

precision of 0.68 and 0.66 and a recall of 0.63 and 0.70 for the category 0 and 1 respectively.

This means that when the model claims a building is category 0, it is correct 68% of the

time and it correctly predicts 63% of the building within category 0. Figure 4.16 shows

the confusion matrices for the model using random forest.

4.6 Feature importance Random Forest algorithm

Applying post-hoc methods to the most promising random forest model allowed the

relative influence of different input features to be evaluated. The feature importance can

be analysed using Shapley values. Figure 4.17 shows the SHAP feature importance of

random forest computed on the test set. Each row represents a variable according to the
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Table 4.7: Damage prediction accuracy for logistic regression, support vector machine,
decision trees, and random forest models

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Logistic
regression

Train Set

Category 0 0.69 0.68 0.69

Category 1 0.68 0.69 0.68

Accuracy on the train set 0.69

Test Set

Category 0 0.67 0.59 0.63

Category 1 0.63 0.70 0.67

Accuracy on the test set 0.65

Support vector
machine (SVM)

Train Set

Category 0 0.72 0.87 0.78

Category 1 0.83 0.65 0.73

Accuracy on the train set 0.76

Test Set

Category 0 0.59 0.74 0.66

Category 1 0.65 0.48 0.55

Accuracy on the test set 0.61

Decision
tree

Train Set

Category 0 0.87 1.00 0.93

Category 1 1.00 0.85 0.92

Accuracy on the train set 0.93

Test Set

Category 0 0.64 0.78 0.70

Category 1 0.71 0.56 0.63

Accuracy on the test set 0.67

Random
forest

Train Set

Category 0 1.00 1.00 1.00

Category 1 1.00 1.00 1.00

Accuracy on the train set 1.00

Test Set

Category 0 0.71 0.56 0.63

Category 1 0.66 0.78 0.70

Accuracy on the test set 0.67

feature importance in the random forest model. They are classified in a decreasing order

such that the most important feature appears at the top.

For this case study, the three main features influencing model decision are the

longitude (east-west location of the building), the latitude (north-south location of the

building), and PGA (interpolated). From an engineering point of view, it might be evident

that the longitude and latitude stand out first as seismic demand varies depending on the

building location. Previous studies pointed out the influence of site effects in Mexico

City Mayoral, Roman, et al. (2019) and Mayoral et al. (2017) reported the significant

spatial variability of ground motions recordings in the east-west direction for the area
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(a) Performance on the training set (b) Performance on the test set

Figure 4.16: Performance of the Random Forest (RF) algorithm

Figure 4.17: Feature importance based on Shapley value

encompassing the Roma and Condesa neighbourhoods. The feature importance results

reported here thus correspond with the high variability of conditions in the east-west

direction for the Roma and Condesa neighbourhoods. Future models encompassing soil

condition as a variable may provide further insights on the east-west variability of the

studied area.
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4.7 Conclusion

This chapter proposed a new analysis technique of analysing and utilising

post-earthquake damage survey data by applying machine learning. This was

successfully applied to the detailed building survey data following the 2017 Puebla

earthquake in the Roma and Condesa neighborhoods in Mexico City. The final random

forest model was 67% accurate in predicting damage to the building stock. The ML

model enabled key building features contributing to damage to be assessed through

the post-hoc method, which can also be useful in aiding future policy development for

seismic risk mitigation. Furthermore, the machine learning model can be readily further

applied to develop rapid regional building performance estimates, for this event and

potentially for future events. This case study highlighted the importance of consistent

input data and data pre-processing. It also demonstrated a framework for developing

machine learning models from earthquake reconnaissance data, and useful metrics

for evaluating the success of the modelling. The experience showed that input data is

key. A larger data set with more buildings for each of the damage class would offer

new opportunities (e.g. increasing the damage prediction resolution) and significantly

improve the model accuracy.

Opportunities also exist in future reconnaissance missions and future building

assessments to include information on losses captured in insurance claims. This then

would enable researchers to extend the methodology for the development of seismic loss

prediction models.



CHAPTER 5
Data integration for the development

of a seismic loss prediction model

using EQC’s residential claims

database

This chapter documents a detailed investigation into the available residential insurance

claims data provided by EQC for this research. It also presents the time-consuming

merging process of aggregating various information from multiple databases. The

process draws heavily upon using Geographic Information System (GIS) techniques. The

experience highlights that built-in functions in current off-the-shelf software do not lead

to a satisfactory output. This project relies on the use of Land Information New Zealand

(LINZ) spatial data as an intermediary to enable the data merging. This approach leads

to a reduction of available sample point but it has been otherwise shown to be generally

effective. The resulting merged data set is sufficiently large for developing a machine

learning model.

93



94 Data integration

5.1 Introduction

In 2010-2011, New Zealand experienced the most damaging earthquakes in its history,

known as the Canterbury earthquake sequence (CES). It led to extensive damage to

Christchurch buildings, infrastructure and its surroundings; affecting commercial and

residential buildings. The direct economic losses represented 20% of New Zealand’s

GDP in 2011. Owing to New Zealand’s particular insurance structure, the insurance

sector contributed to over 80% of losses for a total of more than NZ$31 billion. Over

NZ$11 billion of the losses arose from residential building claims and were covered either

partially or entirely from the NZ government backed Earthquake Commission (EQC)

EQcover insurance scheme. In the process of resolving the claims, EQC collected detailed

financial loss data, post-event observations, and building characteristics for each of the

approximately 434,000 claims lodged following the CES. This coincided with the effort

by the very active NZ earthquake engineering community, which exploited the event and

collected extensive data on the ground shaking levels, soil conditions, and liquefaction

occurrence throughout wider Christchurch, as a large scale outdoor experiment.

5.2 Residential building loss data: EQC claims data set

Following the changes brought by the Earthquake Commission Amendment Act 2019,

EQC permitted access to the claims database for research purposes only on request.

This study uses the March 2019 version of the EQC claims database. Over 95% of the

insurance claims for the CES have been settled by that time. However, revision of the

event apportionment is still subjected to review at that time, meaning that the division

of the cost between events and thus also between EQC and the private insurers is not

finalised.

The EQC claims data set contains 62 data features. The data set contains the

information such as the date of the event, the opening and closing date of a claim,

a unique property number, and the claim amount for the building, content and land.

Among the 62 variables, the database also includes building characteristics. However,

not all meta-data were collected in every instance and this led to incomplete data. As

shown in Figure 5.1, the original EQC database has up to 85% of the values missing
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Figure 5.1: Graphical overview of the raw data in the EQC claims database for
the Canterbury earthquake sequence. The columns represent attributes and the rows
examples. White areas represent missing values. Column 4 represents the PortfolioID,
columns 5 and 6 the longitude and latitude respectively.

for critical features regarding the building characteristics (e.g. construction year, primary

construction material, number of stories). Furthermore, the building characteristics may

be subjective to individual assessor’s visual observation. The scarce information for

building characteristics combined with the necessity to have full data for key variables

led to the need to add information from other sources.

5.3 Data collection from additional databases

To overcome missing information various alternate databases have been merged with

the EQC claims data set. The following describes attributes and information available in

each database.

5.3.1 Sourcing building characteristics

The RiskScape ‘New Zealand Building’ inventory data set (NIWA & GNS Science,

2015) has been adopted by this project to deliver critical information on buildings

characteristics. The ‘New Zealand Building’ inventory collected building asset

information for use within the RiskScape software (NIWA & GNS Science, 2017). This

data set contains detailed engineering and other information for every building in New

Zealand. Table 5.1 shows an overview of selected attributes available in the RiskScape

database.
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Table 5.1: Overview of selected features in the RiskScape data set

Attribute Attribute categories

Longitude NZTM coordinates (Easting)

Latitude NZTM coordinates (Northing)

Construction
Type

1: Reinforced Concrete Shear Wall; 2: Reinforced Concrete
Moment Resisting Frame; 3: Steel Braced Frame; 4: Steel
Moment Resisting Frame; 5: Light Timber; 6: Tilt Up Panel; 7:
Light Industrial; 8: Advanced Design; 9: Brick Masonry; 10:
Concrete Masonry; 11: Unknown Residential; 12: Unknown
Commercial

Deprivation
Index

DI 1 (least deprived) to DI 10 (most deprived)

Floor Area Numerical value in m2

Floor Type 1: Timber; 2: Concrete slab

Footprint Area Numerical value in m2

Roof Cladding
Class

1: Clay/Concrete Tile; 2: Concrete Slab; 3: Membrane; 4: Metal
Tile; 5: Other – Heavy; 6: Other – Light; 7: Sheet Metal

Storeys Number of storeys

Use Category 1: Residential Dwellings; 2: Commercial – Business; 3:
Commercial – Accommodation; 4: Industrial - Manufacturing,
Storage; 5: Industrial - Chemical, Energy, Hazardous; 6:
Fast Moving Consumer Goods; 7: Government; 8: Territorial
Authority/Civil Defence; 9: Lifeline Utilities; 10: Police;
11: Hospital, Clinic; 12: Fire Station; 13: Community; 14:
Education; 15: Resthome; 16: Religious; 17: Forestry, Mining;
18: Farm; 19: Lifestyle; 20: Parking; 21: Clear Site; 22: Other

Wall Cladding
Class

1: Weatherboard; 2: Stucco, Roughcast; 3: Corrugated Iron;
4: Plastic; 5: Fibre Cement Sheet; 6: Fibre Cement Plank; 7:
Reinforced Concrete; 8: Concrete Masonry; 9: Brick; 10: Glass;
11: Curtain Wall Glazing; 12: Sheet Metal; 13: Other Sheet –
Combustible; 14: Other Sheet - Non-Combustible; 15: Other

Year of
Construction

1800 - 2016
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Figure 5.2: Location of the GeoNet recording stations in Christchurch (black dots) and
interpolated PGA contours for the 4 September 2010 earthquake

5.3.2 Seismic demand

A key input for the damage prediction model is the seismic demand for each individual

building. This project utilises recordings from the GeoNet strong motion database which

contains recordings from large earthquakes (Mw 3.5 to 7.8) that occurred in New Zealand

between 1968 and 2016 (GeoNet, 2012; Kaiser et al., 2017; Van Houtte et al., 2017).

GeoNet freely provided strong motion seismograph recordings of all events in the CES as

recorded at 14 recording stations located throughout Christchurch. Whilst there are many

possible metrics to describe the seismic demand, this study focuses on using summary

data such as peak ground acceleration (PGA). The GeoNet data was interpolated for all

Christchurch for four of the critical events for this study using inverse distance weighted

(IDW) in ArcMap (Esri, 2019). Figure 5.2 presents an example of a map layer interpolated

using ArcMap.
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5.3.3 Liquefaction occurrence

During the CES, extensive liquefaction occurred during four events: 4 September 2010,

22 February 2011, 13 June 2011, and 23 December 2011. The liquefaction and related

land damage was the most significant during the 22 February 2011 event. The extent of

land damage from liquefaction as well as the PGA contours for the four aforementioned

events are shown on Figure 5.3. The location and severity of the liquefaction occurrence

was based on interpretation from on-site observations and LIDAR surveys. Similar maps

showing the severity of the observed liquefaction are available to download as .kmz file

from the New Zealand Geotechnical Database (NZGD) (Earthquake Commission (EQC)

et al., 2012). Figure 5.4 shows a map of the liquefaction occurrence for the 22 February

2011 event.

The Land damage and liquefaction vulnerability due to the CES has been extensively

studied. The interested reader is directed to the report from J. Russell and van Ballegooy

(2015).

5.3.4 MBIE Technical categories

Following the CES, the Ministry of Business Innovation & Employment (MBIE) and the

Canterbury Earthquake Authority (CERA) introduced land classifications and zones to

aid foundations repair and rebuild decisions. CERA delimited a “Red Zone” where the

land has been so extensively affected during the CES and that it is expected to experience

poor land performance in future events. Accordingly, the construction of any buildings

is outlawed in the Red Zone (see Figure 5.5). Similarly, “Green Zone” designates where

the construction of residential buildings can take place. The “Green Zone” has been

subdivided into three technical categories (TC): TC1, TC2, and TC3 depending on the

possible future land damage that can occur. For each category, Table 5.2 details the future

land performance expectation from liquefaction and related foundation requirements.

Figure 5.5 shows the extent of the three TC zones in Christchurch.

5.3.5 Soil conditions

The soil properties influence the seismic demand and response of structures and

effect the liquefaction occurrence. This study uses soil information from the Land
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Figure 3.6: Map showing the inferred levels of earthquake shaking and the observed land damage for urban 
residential properties in Christchurch after the (a) 4 September 2010, (b) 22 February 2011, (c) 13 June 2011 
and (d) 23 December 2011 earthquakes. 

In Figure 3.6 the contour lines for the June 2011 and December 2011 are the estimated PGA contour 
lines for the main earthquake events on those dates. These do not capture the influence of the PGAs 
associated with the foreshocks of these events which are relevant to the liquefaction related 
damage observed. This is discussed in more detail in Section 3.7.3. 

Overall, throughout the CES most of urban Christchurch has experienced approximately 500 year 
return period levels of earthquake shaking for one or more of the four main earthquakes. The 
exceptions to this are the north-western suburbs (i.e. Avonhead, Belfast, Bishopdale, Brooklands, 
Bryndur, Burnside, Casebrook, Ilam, Kaiapoi, Northcote Spencerville, Styx and Upper Riccarton) 
which experienced approximately 100 year return period levels of earthquake shaking. 

3.7.3 Mapped Liquefaction Related Land Damage 

As a result of the earthquakes and lodged insurance claims for land damage with EQC, extensive land 
damage evaluations were undertaken by teams of geotechnical engineers and engineering 
geologists. These evaluations characterised the extent and severity of liquefaction related land 
damage after each of the main earthquakes.  

Liquefaction related land damage mapping of residential properties was carried out immediately 
after the September 2010, February 2011, and June 2011 earthquakes to assess the extent and 
severity of the surface effects of liquefaction. The mapping was supplemented by interpretation of 
aerial photography after each of the four main earthquakes to identify areas where liquefaction 
ejecta occurred, but which may have been cleaned up by the time the ground teams arrived to map 

Figure 5.3: Maps showing the central part of Christchurch with the Peak Ground
Acceleration and liquefaction occurrence for the (a) 4 September 2010, (b) 22 February
2011, (c) 13 June 2011 and (d) 23 December 2011 earthquakes (J. Russell & van Ballegooy,
2015)

Table 5.2: Future land performance and foundation criteria for MBIE Technical Categories
(TC), adapted from (Ministry of Business Innovation & Employment (MBIE), 2012) and
(J. Russell & van Ballegooy, 2015)

Foundation
Technical
Category (TC)

Future Land Performance/ Foundation Criteria

TC1 Future land damage from liquefaction is unlikely, and ground
settlements from liquefaction effects are expected to be within
normally accepted tolerances.

TC2 Liquefaction damage is possible in future large earthquakes.
Shallow geotechnical investigations may be required.
Suspended timber floor or enhanced slab foundation options
can be used.

TC3 Liquefaction damage is possible in future large earthquakes.
Deep geotechnical investigation may be required. Might
require specific engineering input for foundations.
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Figure 5.4: Liquefaction occurrence for 22 February 2011, data from (Earthquake
Commission (EQC) et al., 2012)

Information New Zealand (LINZ) (Land Information New Zealand (LINZ), 2019) and

Land Resource Information Systems (LRIS) (Land Resource Information Systems (LRIS),

2014). LRIS publishes a databases that provides topographical and soil conditions for

the Christchurch region (Land Resource Information Systems (LRIS), 2010). Figure 5.6

shows a map of the soils for Christchurch and detailed soil descriptions can be found in

Appendix D. Information on the soil database related to the soil phase, texture, depth

and slope class can be found in Kear et al. (1967) and Cox (1978).

5.4 Feature extraction/selection

5.4.1 Extract EQC residential building claims related to the CES

The EQC insurance claims data set is organised according to the event date when the

damage is purported to have stemmed from.It is thus necessary to extract and organise

the data that are directly related to the CES. The CES started on 4 September 2010 and

ended on 23 December 2011. It includes main events (4 September 2010 (Mw 5.9), 22
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Figure 5.5: Map of CERA “Red Zone” and MBIE Residential Technical Category (Ministry
of Business Innovation & Employment (MBIE), 2012)

February 2011 (Mw 6.2), 13 June 2011 (Mw 6.0), 23 December 2011 (Mw 5.8 & 5.9)) followed

by multiple aftershocks. After filtering for data between the 4 September 2010 and the 23

December 2011 in the EQC claims data set, it results in 76 earthquake events for which

claims have been lodged.

Removing rows with missing information for key variables

In its raw format the EQC data set has 433,536 rows for the 76 earthquake events of

the CES. As shown in Figure 5.1 values for the PortfolioID and building coordinates

are missing for 21,114 and 327 instances respectively. As these features are critical to

identifying a building and thus any subsequent merging process, all rows where either

the PortfolioID and/or building coordinates are missing are removed. After this, the

claims data set pertaining is reduced to 412,418 instances.

Some buildings were damaged in multiple events during the CES thus leading to

several claims being submitted for the same building throughout the CES. Figure 5.7

shows the number of claims and the number of properties for each earthquake event
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Figure 5.6: Map showing the NZSC soil order classification in Christchurch (layer
obtained from (Land Resource Information Systems (LRIS), 2010)). Information of the
soil codes can be found in Table D.1 in Appendix D.

in the CES. For each earthquake, a comparison of the count of the number of claims

versus the number of properties reveals that the number of properties is always lower.

This indicates that in some instances there are multiple claims for the same building in a

particular earthquake event.

Rearrange feature order

The raw EQC’s claims database is claim centric. This means that one row of data

corresponds to one claim. However, the total damage to a property can consist of multiple

claims or multiple rows of data filed at different dates, particularly due to the nature of

multiple events in the CES. Thus, it is later necessary to transform the database into

a property centric layout. To ease the data manipulation in the pre-processing steps,

the variable ‘PortfolioID’ is moved as the first column of the EQC data set and thus as

principle identifier for each instance.

Export data for each earthquake event

Following the aforementioned steps above, the claims data related to each specific
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Figure 5.8: Steps to extract EQC data for a unique event in the Canterbury earthquake
sequence (CES)

earthquake event is re-exported into separate files. This simplifies the merging of

information from external database described in section 5.3, as the seismic demand

and liquefaction occurrence data are collated according to specific events in the CES.

Figure 5.8 shows an overview of the processing steps from the raw EQC claims data to

data for a selected event.
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5.4.2 Select claim status

The EQC claim database entails an attribute that indicates the current status of the claim.

Not all the claims included in the database are settled. For some assessment might still

be in progress or not even started. To obtain a data set with consistent claim values

representative of the actual building loss, it is necessary to select claims that have been

settled. Figure 5.9 shows the number of claims related to the 4 September 2010 event

pertaining to each of the claims status categories. 51.5% of the claims are settled and the

payment is completed. However, 26% have not been assessed or settled yet or have been

declined. 15.2% have been settled on a different claim related to the identical property.

For training a supervised machine learning model, it is necessary to have “clean”

data with known target attributes. Thus, only claims with “Claim Payments Complete”

status are used for the ML model training. Figure 5.10 shows the number of instances

remaining for each important earthquake event in the CES.

5.5 Overview of the data merging

Figure 5.11 shows a schematic overview of the information that are merged on

EQC’s claims data set for this project. The RiskScape data set delivered key buildings

characteristics. GeoNet delivered key seismic demand through interpolated PGA. The

Canterbury maps on liquefaction susceptibility and the NZGD maps on liquefaction and

lateral spreading observation provided information on liquefaction occurrence observed

after the 4 September 2010, 22 February 2011, 13 June 2011, and 23 December 2011

earthquakes. Finally, the LRIS soil map for the upper plains and downs of Canterbury

delivered technical information on the type of soil present in the different areas of

Christchurch. The specific challenges for each of the data merging steps are outlined in

section 5.6.

5.6 Merging building characteristics from RiskScape with EQC

residential claims

Most of the machine learning algorithms require data to be complete across all instances.

It was thus decided to supplement the EQC claims data set with building characteristics
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(a) 4 September 2010

(b) 22 February 2011

Figure 5.9: Number of instances for each category in the attribute ClaimStatus
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Figure 5.10: Number of claims and property for events in the CES after filtering for
ClaimStatus. Only events with more than 1,000 instances prior to cleansing are shown.

Figure 5.11: Schematic overview of the merging of information on top of EQC’s claims
data
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from the RiskScape database. This was not straight forward due to the absence of a

common attribute between the data sets and the non-exact matching of the coordinates

between RiskScape data points and the location of EQC claims.

5.6.1 Initial merging attempts

Spatial join function embedded in GIS software

The first merging attempt used the spatial join function built-in into geographic

information system (GIS) software. However, as EQC data points are fixed to the

cardinal point for each street address, while RiskScape data points are fixed to the exact

coordinates of each physical building, the software was not able to merge EQC claims

data to the RiskScape buildings.

Spatial nearest neighbour

The second merging attempt used a spatial nearest neighbour join (NNJoin) function

(Tveite, 2019). However, the RiskScape data set contains information for main dwelling

as well as secondary buildings (e.g. garages, garden sheds). Thus, in some instances, the

spatial nearest neighbour join led to incorrect merging, and merging of multiple building

characteristics to one EQC claim.

In other cases, the spatial nearest neighbour join assigned incorrect RiskScape

buildings to the EQC claims. It was found that sometimes the neighbouring buildings

can be closer than the correct main dwelling to the EQC claims data point at the street

address.

Figure 5.12 shows a sample comparison between the EQC claims data point locations

and the actual locations of the buildings taken from the RiskScape data set. From the

map, it can be seen that the points from the two data sets are not close to each other. For

some property, it can also be observed that the EQC claims data set entails two points,

meaning that multiple claims have been lodged throughout the CES for that particular

property.
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Figure 5.12: Comparison of the spatial location of the EQC claims data points and the
RiskScape buildings

5.6.2 Alternate approach: constraining the merging using property

boundaries

An alternate approach is to use the Land Information New Zealand (LINZ) NZ Property

Titles data set (Land Information New Zealand (LINZ), 2020a) as an intermediary to

constrain the merging process between EQC and RiskScape within property boundaries.

However, given multiple RiskScape points and potentially multiple EQC claims data

points can be present within a property, GIS approach alone will not be sufficient. The

final adopted methodology used the building street address to enable data matching.

However, the LINZ NZ Property Titles did not directly include information about the

street address. This was instead available in the LINZ NZ Street Address data set (Land

Information New Zealand (LINZ), 2020b). Thus, it was necessary to merge the LINZ NZ

Street Address data (points) with the LINZ NZ Property Titles (polygons) before being

able to use the street address information related to a property.

5.6.3 Merge LINZ NZ Street Address with LINZ NZ Property Titles

Figure 5.13 shows an overview of the process to combine the LINZ NZ Street Address

(points) and LINZ NZ Property Titles (polygons). Both layers were merged using
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with two street addresses 

per property

LINZ property with
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Figure 5.13: Merging of LINZ NZ street address with LINZ NZ property tiles

ArcMap (Esri, 2019). The merging created polygons having street address information.

However, some of the property titles do not have a matching street address (see

Figure 5.14). Filtering was thus performed to select only the properties containing street

address point(s). Despite the filtering, some limitations related to the LINZ data sets

remained. Figure 5.15 shows a satellite image of properties in Christchurch where some

properties entail multiple street addresses within the same property outlines. This issue

seems common case for apartments or properties that were recently subdivided. It was

found that 89% of the LINZ property titles have one LINZ street address point per

property, 7% have two address points, and 4% have three points or more. It should

be reminded that the objective is to use property boundaries as intermediary mean to

merge EQC claims with RiskScape building information. Properties with multiple street

addresses would lead to inconsistencies in merging with claims, possibly associating the

wrong building that lies within the same property boundary.

In order to train a machine learning model for building loss prediction, it is critical to

have a training data set with reliable information. As no automatic solution was deemed

suitable to address the issue with properties having three LINZ street address points or

more, it has been decided to focus only on property titles with one and two street address

point(s) per property. Highlighted in green in Figure 5.16, the map shows examples of

properties having only one street address within each property boundary.
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Figure 5.14: Map of an urban block in Christchurch overlaid with the LINZ NZ Street
Address and LINZ NZ Property Titles layers. This highlights some Property Titles do
not have a matching LINZ NZ Street Address.

5.6.4 Merge RiskScape with LINZ for instances with unique street address

per property

The RiskScape database contains information for residential buildings as well as

secondary buildings (e.g. external garages, garden shed). Therefore, some properties

contain multiple RiskScape points within a LINZ property title (Figure 5.17). All

RiskScape points present in a property were merged to LINZ street address for now.

The merging used the “spatial join” function in ArcMap (Esri, 2019). It led to the street

address information being added to all RiskScape points within a property.

5.6.5 Filtering the LINZ RiskScape data set for primary dwelling data

After LINZ street address was added to all RiskScape points within a property from

the previous step, the data set still needs to be filtered to remove points associated with

secondary buildings to align with the EQC claims data set, which relates to residential

dwellings only.
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Figure 5.15: Satellite image of urban blocks in Christchurch overlaid with the LINZ NZ
Street Address and LINZ NZ Property Titles layers. The polygons with a bold red border
represent LINZ NZ property titles having only one street address.

Figure 5.18 shows an overview of the filtering process. The first step checks if an

address is unique. If an address appears only once within the merged RiskScape data set

with LINZ property information, it can be used without further processing. If an address

appears multiple times, it means that the property matched with multiple RiskScape

points and thus needs to be filtered.

An exploratory analysis of the RiskScape data revealed that some of the building

characteristics are assigned to the incorrect point within a property. As an example, the

building characteristics related to the house were assigned to the RiskScape point located

at the position of the garage and vice-versa. Filtering RiskScape points on the location

would lead to incorrect building properties being merged to EQC claims. However, the

RiskScape database includes two variables related to the building size (i.e. the building

floor area and building footprint). For property containing only two RiskScape points

and under the assumption that the principal dwelling is the building with the largest

floor area and footprint on a property, it was possible to filter the data to retain RiskScape

information related to main dwelling only. After successful filtering, these instances were
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Figure 5.16: Map of urban blocks in Christchurch overlaid with the LINZ NZ Street
Address and LINZ NZ Property Titles layers. The green polygons with a bold red border
represent the selected LINZ NZ property titles having only one street address.

grouped with the RiskScape instances having one point per property title. The result is a

RiskScape data set with street addresses containing residential buildings only.

Some of the properties have three or more RiskScape points (see Figure 5.19).

Automatic filtering of the data using the largest building floor area is unreliable for those

instances. In the aim of retaining only trusted data, it has been decided to discard such

instances with one street address and more than three RiskScape instances in a property.

5.6.6 Properties with two street addresses and one or multiple RiskScape

instances

7% of the LINZ property titles have two street address points. As the number of instances

used to train a supervised machine learning model often affects the model accuracy, it

was attempted to retrieve instances that were not collected via the previously mentioned

approach. Nevertheless, the philosophy here followed was to put emphasis on the
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Figure 5.17: Satellite view of an urban block in Christchurch with RiskScape points and
selected LINZ NZ Property Titles
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Figure 5.18: Steps to filter RiskScape data including secondary buildings to RiskScape
data with residential buildings only
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Figure 5.19: Property with one LINZ street address but multiple RiskScape points

quality of the data rather than the number of points. A specific approach to retain some

of the instances having two LINZ street addresses per properties is explained here.

Figure 5.20 and Figure 5.21 show properties having two LINZ street addresses but a

different number of RiskScape points per property. The property showed in Figure 5.20

has two RiskScape points. A merging approach similar to the one previously where the

RiskScape point is selected using the largest building floor area is impractical as both of

the RiskScape points relate to a residential dwelling for which an EQC claim has been

lodged. From Figure 5.20 it can also be seen that a spatial nearest neighbour alone would

lead to unsatisfactory result as both the LINZ street address points are located closer to

the RiskScape point representing the house near the street. Figure 5.21 shows properties

having two LINZ street addresses and multiple RiskScape points pertaining to houses

as well as secondary buildings. An adequate selection of RiskScape points is required in

order to have a data set entailing residential buildings only.

Based on the complexity presented by the examples above, the effort is focused

on retaining the case when there are two LINZ street addresses and two Riskscape

points in the same properties. The steps are as follows. First, select the LINZ street
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Figure 5.20: Property with two LINZ NZ street address points and two RiskScape points
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Figure 5.21: Property with two LINZ NZ street address points and three RiskScape points
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Figure 5.22: Neighbouring properties having two LINZ NZ street addresses and two
RiskScape points each leading to issues with the “spatial join - closest”

address points for property tiles with two street addresses and the RiskScape points

located within properties having two addresses. Merge the points using the “spatial join

- closest” function embedded within the ArcMap software (Esri, 2019). This leads to each

RiskScape points being assigned the closest LINZ street address point.

In some cases, multiple RiskScape points were assigned to the same LINZ street

address point, which created duplicate instances. Figure 5.22 shows an example for

neighbouring properties both having two LINZ street address points and two RiskScape

points. For one of the LINZ street address point, the “spatial join - closest” function

merged the LINZ point to the closest RiskScape point but also wrongly assigned another

RiskScape point from the neighbouring property, thus creating a duplicate instance.

These cases were removed. Following the selection of RiskScape points merged to their

unique single LINZ points, the data was appended to the previous RiskScape data set.
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5.6.7 LINZ and RiskScape merging for instances with unique and double

street address(es) per property

Table 5.3 summarises the merging steps depending on the number of LINZ street address

points and RiskScape points per LINZ property title. Three combinations were retained:

1. a direct selection for properties with one street address and one RiskScape point,

2. a selection with filtering using the largest floor area for properties with one street

address and two RiskScape points, and

3. “spatial join - closest” combined with filtering to retain only the resulting instances

with two LINZ street addresses and two RiskScape points.

To obtain clean data only, properties entailing three or more street address points or

RiskScape building were discarded. While the current selection approach is conservative,

it ensured each EQC claim can automatically be assigned to the corresponding residential

building using the street address. For cases with multiple street addresses or residential

buildings within the same property, a manual assignment of RiskScape points to LINZ

street address points would enable the inclusion of more instances. However, this was

impractical and insignificant for retaining only 4.04% of the overall LINZ property titles.

5.6.8 Merge EQC claims data with street addresses

The overall merging process of EQC claims points to LINZ street address points is similar

to the process merging RiskScape to LINZ. The limitations related to the combination of

the LINZ NZ street address data with the LINZ NZ property titles apply here as well.

Hence, it was only possible to merge EQC claims to street address for points contained

within LINZ property titles with one street address and to some extent retain claims for

properties with two street addresses per title.

5.6.9 Multiple EQC instances

The EQC claims were treated separately for each event in the CES (4 September 2010,

22 February 2011, 13 June 2011, 23 December 2011). However, even after the selection of



118 Data integration

Table 5.3: Overview of the action taken depending on the number of LINZ NZ street
address and RiskScape point present per LINZ NZ property title

LINZ NZ street address RiskScape Action

1 point per LINZ
property title

1 point per property title Direct selection

1 point per LINZ
property title

2 points per property
title

Select the RiskScape
point with the largest
building floor area

1 point per LINZ
property title

3 or more points per
property title

Discarded

2 points per LINZ
property title

1 point per property title The automatic selection
and filtering did not
retain those instances as
it could not differentiate
this specific case

2 points per property
LINZ title

2 points per property
title

Retain these instances
based on "spatial join -
closest" combined with
filtering.

2 points per property
LINZ title

3 or more points per
property title

Discarded

3 or more points per
LINZ property title

Any configuration Discarded

the claims related to an event, some properties still entailed multiple EQC instances. Two

reasons were found.

1. First, for properties with two street addresses and two RiskScape points, the claims

needed to be assigned to the corresponding building, similar to that described in

section 5.6.6 using “spatial join - closest”. This process led to some EQC claims

being merged to another street address, albeit to a more lesser extent than for

RiskScape points as EQC claims points are located closer to LINZ street address

point.

2. Second, for properties with one street address, there were several EQC points when

multiple claims were lodged for the same event.

In its original structure, the EQC claims data set is claim centric meaning that each

row represents a claim that was lodged for one of the earthquake events during the

CES. The aim, however, is to develop a machine learning model for loss prediction on



Add the seismic demand, liquefaction, and soil conditions information to EQC claims
database 119
Process
Step 4: Merge EQC claim with RiskScape using address

EQC claims for 
selected event

with RiskScape
and adresses

Inner join 
on address

Claims for a
selected event

RiskScape
with one address per property title

(only residential buildings)

Remove EQC features 
not related to building 

loss

RiskScape
with unique 

address

Claims for 
selected event
with unique 

address

Select points for which 
ClaimStatus equals 

ClaimPaymentsComplete

Check number 
of claims per 

building
Union of both 

sets

Instances with unique 
address

Group by address  
summing all instances 
related to one address

Unique

Multiple

Figure 5.23: Steps to merge EQC and RiskScape using the LINZ NZ street address

a building by building basis. Therefore it is necessary to have training data where each

row relates to one building only. The transformation was achieved by grouping multiple

instances pertaining to the same building (instances having an identical address).

The claims data points were grouped by street address, and then the claim values

were summed to obtain the overall losses that a building experienced for the selected

earthquake event. This transforms the EQC data set to become property centric. This

new layout facilitates the understanding of the number of events which affected each

residential building and enables mapping of the necessary information on the building

characteristics (from RiskScape), seismic demand, liquefaction and soil conditions for a

considered event.

5.6.10 Merge EQC claims with RiskScape

Once the LINZ NZ street address information added to RiskScape and EQC, these data

sets were merged in Python using the street address as a common field. Figure 5.23 shows

a schematic of the overall merging process.

5.7 Add the seismic demand, liquefaction, and soil conditions

information to EQC claims database

The final step of preparing the EQC claims data was to add information related to the

seismic demand, the liquefaction occurrence, the location of MBIE Technical categories,
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Figure 5.24: Steps to add the seismic demand, the liquefaction occurrence, the location of
MBIE Technical categories, and the soil conditions on top of EQC claims

and the soil conditions. This was achieved within ArcMap (Esri, 2019) by importing each

of the data set as a separate GIS layer. The information contained within each GIS layer

was merged with the EQC claims previously combined with RiskScape as explained in

section 5.6. Finally, using the street address as a common attribute, the information was

combined in one merged data set. Figure 5.24 shows a schematic overview of the process.

5.8 The number of usable data points through the data merging

process

Figure 5.25 shows the evolution of the number of instances for the 4 September 2010

and 22 February 2011 after each step in the merging process. In its original form, the

EQC raw data set entails 145,000 claims for the 4 September 2010 and 144,300 claims for

22 February 2011. The first step was to clean the raw data by removing the instances

missing information for the PortfolioID and building coordinates. This led to the loss of

6,300 points for 4 September 2010 and 6,600 for 22 February 2011.

The second step retained only the instances for which the claims payment was

completed. The extraction of those claims induced the largest drop of the number of

points with a loss of 48.5% for the instances related to 4 September 2010 and 46.5% for 22

February 2011 leaving only 71,500 and 73,700 claims for each respective event.

The third step merged the extracted claims with the LINZ NZ street addresses. This

merging further induced a large drop in the number of instances. 33.5% of the claims
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for 4 September 2010 and 25.9% for 22 February 2011 were lost because the correct street

address could not be attached to a claim.

The fourth step transformed the data from a claim centric data set to a property

centric data set. This reduced the number of claims from 47,500 to 44,500 for 4 September

2010 and from 54,600 to 49,000 for 22 February 2011. However, no information was lost

during this transformation process. Multiple claims related to the same building were

aggregated together to obtain the overall losses for the building for a selected earthquake

event.

The fifth step, merging the data with RiskScape, led again to a loss of information as

some of the instances could not be matched to the correct point from the RiskScape data

set. 12% of the instances were lost for both 4 September 2010 and 22 February 2011.

Finally, the sixth step, dealing with the addition of information related to the seismic

demand, liquefaction occurrence, and soil information led to the loss of 1.4% and 1.5%

of the instances leaving 38,607 and 42,486 points for 4 September 2010 and 22 February

2011 respectively.



122 Data integration

(a) 4 September 2010

(b) 22 February 2011

Figure 5.25: The number of data points after each processing step for event on 4
September 2010 and 22 February 2011
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5.9 Conclusion

An examination of the raw data showed that the EQC claims data set has up to 85%

of key building characteristics attributes missing. This chapter presented an approach

to supplement information for the building attributes, seismic demand, liquefaction

occurrence and soil type on top of EQC claims data set. Several challenges were

encountered during the merging process mainly due to the fact that it was difficult

to identify buildings across multiple data sets as there were no unique identifiers.

Approaches using built-in functions from GIS software or based on spatial nearest

neighbours led to unsatisfactory results as the claims were not located in the vicinity

of the RiskScape points. The proposed solution used LINZ NZ property titles and LINZ

NZ street address as an intermediary for the merging process. It was not possible to

retain all the instances as some of the properties contained multiple street address points

which led to difficulties assigning the RiskScape buildings to the correct address. The

proposed solution worked well for instances related to properties having a unique LINZ

street address, and properties with one or two RiskScape buildings, matching the street

address and EQC claims.

The difficulties in the merging process highlighted the need for a unique identifier for

each residential building to allow for better integration of the information from multiple

data sources. Although the merging induced a drop in the number of instances, the

most significant loss of points came from the selection of the claim status. The final

merged data sets include 38,600 instances for 4 September 2010 and 42,400 points for 22

February 2011. These merged data sets have EQC’s claims and additional corresponding

attributes, and they will be used as inputs for developing seismic loss prediction models

for residential buildings in New Zealand in the next two chapters.





CHAPTER 6
Data pre-processing and model

development of a seismic loss

prediction model for residential

buildings - Christchurch, New

Zealand

This chapter presents the development of a machine learning model for the seismic

loss prediction of residential buildings in Christchurch, New Zealand. It presents the

main features available in the merged data set, details the distribution of the data,

and documents the filtering process. The chapter then explains the processing of the

target attribute and the processing of BuildingPaid from a numerical into a categorical

variable. Subsequently, it describes the attribute selection, discusses the reasons for the

non-inclusion of some attributes, and highlights the importance of attribute preparation.

Finally, the chapter documents the algorithm selection, training, and model evaluation.

125
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6.1 Introduction

The merging process of residential building claims from the 4 September 2010 and

22 February 2011 events led to 38,600 and 42,400 instances respectively. Each instance

contains EQC information on the building losses (capped) enriched with data related to

the building characteristic, seismic demand, liquefaction occurrence, and the soil type.

For supervised machine learning algorithms to “learn” from a large number of instances,

the input data has to satisfy specific requirements (e.g. no missing values). It was thus

necessary to pre-process the data, deleting instances with missing information, and

filtering the categorical data to remove any outliers that would influence the prediction

performance and affect the model ability to generalise. Once the data pre-processed,

the model attributes were selected, and the data set was split into a training and

validation set. The machine learning algorithms were then trained using the training

set. Additional efforts were applied to the model training for the 4 September 2010

event as the target variable had shown a significant imbalance between the categories.

Several algorithms such as linear regression, decision tree, support vector machine

(SVM), and random forest were then applied. Their prediction accuracy were evaluated

and compared. The algorithm leading to better prediction performance was retained.

Particular attention was also paid to the human interpretability of the model. Intrinsically

interpretable algorithms had been preferred. More complex algorithms were applied

in combination with post hoc methods to allow for interpretability as this study aims

to develop a ‘grey-box’ model where the intermediate steps can be followed. Such

a ’grey-box model’ allows modellers to look through and validate the predictions at

various key intermediate steps. It later also enables different stakeholders to extract

relevant information that matters to them.

6.2 Feature filtering

Before fitting a machine learning model to a data set, it is necessary to remove any

instance with missing value as many of the machine learning algorithms are unable to

make predictions with missing features.
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Step 6: Data pre-processing
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Figure 6.1: Overview of the steps for the filtering of the EQC features

Underrepresented categories within attributes are also carefully examined.

Categories with few instances introduce challenges for the machine learning algorithms

as the model will have difficulties to “learn” and generalise for the particular category.

In some cases where the meaning is not changed, it is possible to combine instances

from different categories. However, whenever a combination of multiple classes is not

possible, categories entailing a few instances are removed.

The following section presents the filtering process for the EQC and RiskScape

attributes. The objective is to retain as many information while ensuring that each

category contains sufficient number of instances to obtain the best possible model

accuracy.

6.2.1 EQC attributes

Figure 6.1 outlines the process for verifying the key EQC features within the previously

merged data set. To begin, the merged data set was inspected to ensure that the ClaimID,

Portfolio ID, and street address are unique for each instance, and that the data set

contains only claims for which the payment was completed.

Number of Dwelling Insured

The EQC claims data set contains an attribute specifying the number of dwelling insured

on a claim. Figure 6.2 shows the number of instances having one, two or more dwelling

assigned to a claim. While 93% of the claims for 4 September 2010 and 89% for 22

February 2011 event are for single dwellings, 7% and 11% have zero dwelling for 4
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.2: Number of instances for each value in Number of Dwelling insured

September 2010 and 22 February 2011 respectively. For both of the data sets, less than 1%

have two or more dwellings. To avoid any possible issue with the division of the claim

value between the multiple buildings, only claims related to one dwelling are retained.

EQC Building Sum Insured

At the date of the CES, EQC provided a maximum cover of NZ$100,000 (+ GST) or

NZ$115,000 for a residential dwelling for each natural event (Earthquake Commission

(EQC), 2019b). In the EQC data set, a numerical attribute gives the maximum cover

related to the claim lodged. For examination, the data was binned into five categories

as shown in Figure 6.3. For both the 4 September 2010 and 22 February 2011 event, more

than 92% of the claims relate to buildings having a cover of NZ$115,000. Nevertheless,

some instances show a maximum cover above the NZ$115,000 threshold despite only

properties with after one dwelling is retained from the previous step. Conversely, about

5% of the instances for both events are below the maximum cover. To ensure data

integrity for the machine learning model, only the instances with exactly NZ$115,000

maximum cover were selected.

Building Paid = Building Net Incurred

The EQC data set contains two attributes (‘Building Paid’ and ‘Building Net Incurred’)
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(a) 4 September 2010

(b) 22 February 2011

Figure 6.3: Number of instances for EQC Building Sum Insured (categorised)

related to the payments for building damage. For claims marked as completed and closed

those attributes should be equal. Despite the selection of settled claims only, ‘Building

Paid’ were not exactly equal to ‘Building Net Incurred’ for 1% of the instances (see

Figure 6.4). Those instances were removed to ensure that ‘Building Paid’, which will be

used as the target variable for the machine learning model, are reliable final loss value

for each building.

6.2.2 RiskScape attributes

Building Use Category

RiskScape has an attribute which specifies the use category of a building. While EQC

insured residential buildings only, the RiskScape ‘Use Category’ shows that some of the

buildings have a different main purpose (see Figure 6.5). To ensure the claims related to
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.4: Number of instances for which Building Paid equals Building Net Incurred

(a) 4 September 2010 (b) 22 February 2011

Figure 6.5: Number of instances per ’Use Category’

residential properties only, all instances not having residential dwellings ‘Use Category’

were discarded.

Building Floor area

An examinations of the building floor area revealed the presence of outliers, with values

reaching up to 3,809 sqm for a house (see Figure 6.6). A filtering threshold was thus set

at 1,000 sqm to remove the outliers. This led to a minimal loss of the instances (0.1%)

but eliminated the outliers. The distribution of the building floor area below 1,000 sqm is

shown in Figure 6.7.
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.6: Distribution of Building Paid against Building Floor area

(a) 4 September 2010 (b) 22 February 2011

Figure 6.7: Distribution of Building Floor area (selected below 1,000 sqm)

Construction Type

Figure 6.8 shows the number of instances for each construction type in the merged

data set. Light timber buildings is the most prevalent construction type, with

26,414 buildings and 26,387 buildings for 4 September 2010 and 22 February 2011,

respectively. Conversely, steel braced frame, light industrial, reinforced concrete (RC)

moment-resisting frame, and tilt-up panel only appear in very few instances. Given that

these categories have less than 100 instances, it is unlikely machine learning models can

make correct predictions for those construction types. It was thus decided that these are

not within our scope and to filter out those underrepresented categories.

Selected, along with light timber dwellings were buildings where main construction

type is classified as RC shear wall, concrete masonry, and brick masonry. While the latter

category only entails 347 and 371 instances for 4 September 2010 and 22 February 2011

respectively, it was deemed necessary from an engineering point of view to retain brick

masonry as possible construction type in the model.
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.8: Number of instances for each Construction Type category

(a) 4 September 2010 (b) 22 February 2011

Figure 6.9: Number of instances for each category of Floor Type

Floor Type

Figure 6.9 shows the number of instances per building floor type. The attribute has

two categories: concrete slab and timber floor. Sufficient instances are present in both

categories such that no filtering was required.

Deprivation Index

The deprivation index attribute in the RiskScape data set describes the relative affluence

of the neighbourhood where the building is located. Figure 6.10 shows the number of

instances per deprivation index category. Nine of the ten categories are well represented.

Only the category for the deprivation index 10 (most deprived) has a lower 279 instances

for 4 September 2010 and 316 for 22 February 2011. Nevertheless, all data was kept
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.10: Number of instances for each category of Deprivation index (DepInd01 =
least deprived to DepInd10=Most deprived)

in order to capture the full possible range of values related to the deprivation index

attribute.

Wall Cladding

The RiskScape wall cladding attribute has fifteen categories. Thirteen of those are present

in the data set for 4 September 2010 and 22 February 2011 (see Figure 6.11). Eight of

these are under-represented: fibre cement sheet, fibre cement plank, plastic, other sheet

– combustible and non-combustible, corrugated iron, glass, and other. The instances

with ‘fibre cement sheet’ and ‘fibre cement plank’, were combined together and retained

within the model, while the remaining categories were discarded.

Roof Cladding

The attribute roof cladding differentiates seven types of roof material. Figure 6.12 number

of instances per category for 4 September 2010 and 22 February 2011. The three most

common roof material are sheet metal, clay/concrete tile, and metal tiles. There are

insufficient entries for ‘other heavy’ and ‘concrete slab’ and these categories were thus

discarded.

Soil Type

Figure 6.13 shows the number of instances per soil type. To ensure that the machine
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.11: Number of instances for each category of Wall Cladding

(a) 4 September 2010 (b) 22 February 2011

Figure 6.12: Number of instances for each category of Roof Cladding
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.13: Number of instances for each soil category

learning can generalise, the soil types having less than a hundred instances for 4

September 2010 or 22 February 2011 were removed.

6.2.3 Filtering of the target attribute: Building Paid

Despite the data set having been previously filtered in section 6.2.1 to only have

‘EQC Building Sum Insured’ as exactly NZ$115,000, some data instances still had

‘BuildingPaid’ greater than NZ$115,000. It was even discovered that some instances had

negative values.

It was thus decided to only include data instances with BuildingPaid between NZ$0

and NZ$115,000. Figure 6.14 shows the distribution of Building Paid within the selected

range for 4 September 2010 and 22 February 2011. The overall distribution is relatively

similar for both events with many buildings below NZ$20,000, few claims between

NZ$20,000 and NZ$110,000, and many instances close to the NZ$115,000 cap. However,

the 22 February 2011 event led to more claims that reached the maximum cover.

6.2.4 Evolution of the number of points during the feature filtering

Figure 6.15 presents a graphical overview of the further data verification through feature

filtering after the filtering from database merging. Figure 6.16 shows the evolution of the
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.14: Distribution of BuildingPaid after selection of the instances between NZ$0
and NZ$115,000
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Figure 6.15: Overview of the filtering steps for the RiskScape attributes

number of instances after each filtering operation for 4 September 2010 and 22 February

2011 data. 27,932 instances for 4 September 2010 and 27,479 instances for 22 February

2011 remain following feature filtering.

6.3 Processing of the target attribute

6.3.1 Building loss ratio or Building Paid

An attempt was made to create a ‘Building Loss Ratio’ target attribute, a concept similar

to the Building Damage Ratio (BDR) proposed by J. Russell and van Ballegooy (2015).

The ‘Building Loss Ratio’ is the ratio of ‘Building Paid’ over the ‘Modelled Dwelling

Value’, where ‘Building Paid ‘is the total cash paid by EQC to date and the ‘Modelled

Dwelling Value’ is the dwelling value in NZ$ modelled by EQC. Using the ‘Building
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(a) 4 September 2010

(b) 22 February 2011

Figure 6.16: Evolution of the number of instances after each feature filtering step
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Loss Ratio’ rather than ‘Building Paid’ creates a nondimensionalised target feature that is

independent of the residential property value. However, the ‘Modelled Dwelling Value’

attribute was frequently missing for many residential buildings, further there is great

uncertainty in this attribute. It was thus decided to simply use Building Paid only as the

target attribute.

6.3.2 Cap

At the time of the CES in 2010-2011, EQC’s liability was capped to the first NZ$100,000

(+GST) (NZ$115,000) of building damage. Costs above this cap were borne by private

insurers if building owners previously subscribed to adequate insurance coverage.

Private insurer could not disclose information on private claims settlement, leaving

the claims database for this study soft-capped at NZ$115,000 for properties with over

NZ$100,000 (+GST) damage.

6.3.3 Transform BuildingPaid to a categorical attribute

In the original EQC claims data set, ‘Building Paid’ is a numerical attribute. Initial

modelling attempts using of ‘BuildingPaid’ as a numerical target variable produced

poor model predictions in terms of both accuracy or ability for generalisation. ‘Building

Paid’ was thus transformed into a categorical attribute. Rather than defining the

category threasholds randomly, thresholds for the cut-offs were chosen according to

the EQC definitions related to limits for cash settlement, the Canterbury Home Repair

Programme, and the maximum coverage provided (Earthquake Commission (EQC),

2019a).

Any instances with less than and equal to NZ$11,500 is classified as the category

‘low’, reflecting the limit of initial cash settlement consideration.

Next, while the maximum EQC building sum insured was at NZ$115,000, it was

found that many instances that were over cap showed a Building Paid value close to

but not exactly at NZ$115,000. In consultation with the risk modelling team at EQC, the

threshold for the category ‘Over Cap’ was set at NZ$113,850 as this represents the actual

cap value, nominal cap value minus 1% excess.
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Figure 6.17: Schematic overview of the thresholds for the transformation of Building Paid
from a categorical to a numerical attribute

Figure 6.18: Selected attributes for the model using data from 4Sep2010

Instances with Building Paid values between NZ$11,500 and NZ$113,850 were

subsequently assigned the category ’medium’. Figure 6.17 shows a schematic overview

of the thresholds used to transform Building Paid from a numerical attributes into three

categorical attributes.

6.4 Attribute selection

Nine attributes plus the target variable Building Paid Category were selected for the

model development. Figure 6.18 shows a graphical overview of the attributes selected

and the number of instances for the pre-processed data. None of the columns in

Figure 6.18 show any white rows confirming that the data is complete with no missing

value for all the instances.
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.19: Number of instances in Building Paid categorical in the filtered data set

6.4.1 Target attribute: Building Paid - Categorical

As described in section 6.3.3, the numerical attribute ‘Building Paid’ was transformed

into three categories depending on the value of ‘Building Paid’. Figure 6.19 shows the

number of instances in each category for the four main events of the CES.

6.4.2 Liquefaction

Widespread liquefaction occurred mainly during the 22 February 2011 and 13 June 2011

events. The 4 September 2010 and 23 December 2011 events experienced liquefaction but

to a limited extent (see Figure 5.3). Figure 6.20 shows the number of claims for which

buildings experienced liquefaction, or not, for the main events in the CES.

6.4.3 PGA

Figure 6.21 shows the distribution of the PGA values for the main events in the CES.

The majority of the residential buildings experienced less than 0.60 g of PGA for all

events. Only during 22 February 2011 and 13 June 2011, a small number of buildings
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.20: Number of instances in the filtered data set which experienced liquefaction

experienced higher accelerations. The 4 September 2010 event and 23 December 2011

event generated PGA levels between 0.10 g and 0.50 g, however,for both events, over 90%

of the buildings experienced PGA values below 0.30 g (see Figure 6.21a and Figure 6.21d).

The 22 February 2011 and 13 June 2011 led to PGA values up to 1.34 g and 1.88 g

respectively (see Figure 6.21b and Figure 6.21c). For the 22 February 2011, 86% of the

damaged building were in the range 0.21 g to 0.60 g, while for the 13 June 2011 84% of

the residential buildings for which a claim has been lodged experienced values below

0.40 g.

6.4.4 Construction Type

Figure 6.22 shows the number of instances per construction type. On average, 86.1% of

the residential buildings damaged are made out of light timber, 6.5% are RC shear wall

buildings, 6.3% are concrete masonry houses, and 1.1% are brick masonry buildings.

6.4.5 Building Floor Area

Figure 6.23 shows the distribution of houses by building floor area.



142 Development of a seismic loss prediction model

(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.21: Distribution of PGA in the filtered data set
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.22: Number of instances per Construction Type in the filtered data set

(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.23: Number of instances by Building Floor Area in the filtered data set
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.24: Number of instances by Building Floor Area in the filtered data set

6.4.6 Floor Type

Figure 6.24 shows the number of building having a timber floor or concrete slab as floor

type. On average 77.8% of the damaged buildings have a concrete slab and 22.2% a timber

floor.

6.4.7 Wall Cladding

Figure 6.25 shows the number of instances by wall cladding class. With 34% on average,

brick is the most common wall cladding type. Weatherboard the second cladding type

represent 23.5% of the instances. Stucco, reinforced concrete, and concrete masonry

account for 14.1%, 12.8% and 13.2% respectively. Fibre cement (plank and sheet) are

found in less than 3% of the buildings.

6.4.8 Deprivation Index

Appendix E shows a map of the deprivation index in urban Christchurch. The

neighbourhoods east of Christchurch’s CBD are recorded the most deprived. Figure 6.26
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.25: Number of instances by Building Floor Area in the filtered data set

shows the distribution of the deprivation index of the buildings for the four key events

in the CES. A key to note is that distribution amongst deprivation index remains similar.

6.4.9 Construction year

Figure 6.27 shows the number of instances per period of construction. The oldest

building dates from 1888. The majority of the dwellings were constructed after 1950,

with approximately 28% built between 1953 and 1972, 20% between 1973 and 1992, and

26% constructed after 1993.

6.4.10 Soil type

Figure 6.28 shows the number of buildings classified by soil code according to the soil

map for the Upper Plains and Downs of Canterbury (Land Resource Information Systems

(LRIS), 2010). The soil type recent fluvial (RFW), organic humic (OHM), gley orthic

(GOO), brown sandy (BST), and pallic perch-gley (PPX) are the most represented. RFW

is the most common with 47.6% of the building built on recent fluvial soil. OHM follows

with 19.6% of the instances constructed on this soil type. GOO, BST, and PPX, the next

represented categories account for 10.1%, 9.0%, and 6.9% respectively.
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.26: Number of instances by Deprivation Index in the filtered data set
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.27: Number of instances by construction period in the filtered data set
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(a) 4 September 2010 (b) 22 February 2011

(c) 13 June 2011 (d) 23 December 2011

Figure 6.28: Number of instances per soil type in the filtered data set
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6.4.11 Latitude and Longitude

Information on the building coordinates (latitude and longitude) are available in the

merged data set. For some machine learning prediction models, latitude and longitude

might deliver useful information. For house price prediction for instance, building

coordinates can convey background information such as the walkability and the

desirability of the neighbourhood (i.e. wealth of the neighbourhood, quality of the

local elementary school). Retaining latitude and longitude in such models might thus

incorporate hidden insights and increase the predictive accuracy (Géron, 2019; Ma et al.,

2020).

In a house prediction model, as the house is stationary, the latitude and longitude

attribute convey the same background information for each model over time (i.e. the

latitude and longitude attributes have the same meaning today as for future house price

predictions). However, in earthquake engineering, the epicentre location is changing for

different earthquakes such that for each event, the background information related to the

attributes latitude and longitude is not the same. The latitude and longitude attributes

are thus not retained in this model. Notably, information such as seismic demand,

liquefaction occurrence, and soil conditions are captured directly through other attributes

that are generalisable for all earthquake events.

6.5 Attribute preparation

6.5.1 Training, validation, and test set

For machine learning, the data is split into three distinct sets, the training, validation (or

development), and test set. Figure 6.29 shows a schematic of the splitting and their use in

the development of the seismic loss model. The training and validation sets are coming

from the same data set using 80% of the data for training and 20% for validation. The 4

September 2010 pre-processed data has 27,932 instances. Thus, there are 22,345 instances

in the training set and 5,587 instances in the validation set. The 22 February 2011 entails

27,479 total instances, thus leading to 21,983 examples in the training set and 5,496 in the

validation set.
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Figure 6.29: Overview of the training, validation, and test data sets and their usage in the
development of a machine learning seismic loss model for Christchurch

Unlike the ‘traditional approach’ where the test set is held out from the same

data as the training and validation set, the test set here employed comes from

another earthquake. Testing the model using data from another earthquake in the CES

(pre-processed in the same way as the training and validation set) enables to evaluate the

model capacity to generalise to other events. Thus changing the earthquake from which

the input and test data set comes from, it is possible to study multiple combinations

and find the model which works the best for the entire CES. This approach to evaluate

the model performance using test data from another earthquake event is explained in

section 7.2.

6.5.2 Handling categorical features

Categorical attributes are transformed into binary arrays for adoption by machine

learning algorithms. For the model in this study, strings in categorical features were

first transformed into an ordinal integer using the scikit-learn Ordinal encoder. Once

converted to integers, the scikit-learn One Hot Encoder was used to encode the

categorical features as one-hot numeric array.
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(a) 4 September 2010 (b) 22 February 2011

Figure 6.30: Correlation matrix between the numerical features

6.5.3 Handling numerical features

Numerical features are checked against each other for correlation prior to the machine

learning training. If two features are correlated, best practice is to remove one of them.

Figure 6.30 presents correlation matrices showing the Pearson correlation coefficients

between the numerical attributes. It confirmed that there is no significant linear

correlation between selected numerical attributes.

The numerical data is also normalised prior to the training process according to

best practice. This step is called feature scaling. The most common feature scaling

techniques are min-max scaling (also called normalisation) and standardisation. Both

these techniques are implemented in scikit-learn. In this study, a min-max scaling

(normalisation) approach was used to scale the numerical features.

6.5.4 Addressing class imbalance

Figure 6.19a shows the number of instances for each category in the target variable

Building Paid for the 4 September 2010 data. While the categories ‘low’ and ‘medium’

have respectively 16,558 and 9,970 instances, the category ‘over cap’ has only 1,404

instances. The ‘over cap’ category is thus the minority class with a significant difference

in the number of instances compared to the two other categories. Training a machine

learning algorithm using the data in this form would lead to poor modelling performance

for the over cap category. Thus, before training the model, the imbalanced-learn Python

toolbox (Lemaitre et al., 2017a) was applied to address the class imbalance.
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The toolbox encompasses several under-sampling and over-sampling techniques,

however not all of them apply to multi-class problem (see Figure 2.23 in section 2.7.5).

The over-sampling and under-sampling techniques suitable for multi-class problem were

trialled (random over-sampling (ROS), cluster centroids (CC) or random under-sampling

(RUS)). For the 4 September 2010 data, ROS delivered the best results regarding the

overall model predictions as well as the prediction for the minority class over cap.

6.6 Algorithm selection and training

The model is trained using the merged data set which included information on the

model attributes as well as the target attribute ‘BuildingPaidCat’, thus making the

training a supervised learning task. Given the nine attributes selected for the model

development (see Figure 6.18), the objective of the model is to predict if a building

will fall within the category ‘low’, ‘medium’, or ‘over cap’ (expressed via the target

variable ‘BuildingPaidCat’) thus leading to a categorical model for three classes. Several

machine learning algorithms can perform supervised learning task for categories (e.g.

logistic regression, support vector machine (SVM), artificial neural networks (ANN)).

Those algorithms differentiate themselves by their complexity. More complex algorithms

can develop more detailed models with a potential improved prediction performance,

but complex algorithms are also more prone to overfitting.

For this study, the prediction performance is an essential metric. Nevertheless, the

human interpretability of the model is also of significant interest as the goal is to

produce a ‘grey-box’ model enabling for the derivation of insights. Unfortunately, not

all algorithms are intrinsically interpretable. Table 2.2 in section 2.10 shows a list of some

intrinsic interpretable machine learning algorithms. In this project, logistic regression,

decision trees, SVM and random forest classification algorithms were trialled. Once the

model is trained, the hyperparameters of the algorithms were tuned (see Figure 6.29).

The performance of each model is presented in the following section.
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6.7 Model evaluation

Table 6.1 shows the performance of logistics regression, SVM, decision trees, and random

forest machine learning models trained and validated with data from 4 September 2010.

Random forest stood out for its overall prediction performance. It achieved an accuracy

of 0.62 on the validation set despite over-sampling of the underrepresented class and

careful consideration of overfitting via tuning of the hyperparameters. Deemed as the

best performing algorithm, random forest was thus selected for the machine learning

model in this study.

Table 6.2 presents the performance of the Random Forest algorithm for training

and validation sets from the 4 September 2010, 22 February 2011, 13 June 2011, and

23 December 2011. Despite the thorough attribute filtering, attribute selection, attribute

preparation, and model development addressing class imbalance and carefully checking

for under- and over-fitting, the prediction accuracy of the Random Forest algorithm on

the validation set for all the four events did not exceed 0.63.

There are numerous possible reasons for the limited model performance. For three

of the four events, there is a significant class imbalance between the classes of the target

variable with over cap instances being mostly underrepresented. Despite the use of the

Python imbalance toolbox to address the imbalance, having more instances in the over

cap category would be beneficial. Similarly, having more direct information collected

on-site about the building characteristics would improve the completeness of the EQC

data set, which could benefit the model performance.

Figure 6.18 shows the target variable and nine selected model attributes. These

attributes were selected based on domain knowledge as possible features that could

affect the building losses. There may be other attributes that were not considered in this

study that have direct and indirect effects on the value of a claim. Machine learning can

only generalise and make new predictions if the selected model attributes are relevant

to the problem. It is thus possible that the inclusion of additional attributes might be

beneficial to the overall model accuracy.
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Table 6.1: Model evaluation for logistic regression, SVM, decision trees, and Random
Forest for the 4 September 2010 data

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Logistic
regression

Train Set

Low 0.71 0.62 0.66

Medium 0.48 0.42 0.45

Over cap 0.15 0.47 0.22

Accuracy on the train set 0.55

Validation Set

Low 0.71 0.63 0.67

Medium 0.50 0.43 0.46

Over cap 0.14 0.46 0.21

Accuracy on the validation set 0.55

Support vector
machine (SVM)

Train Set

Low 0.59 0.60 0.60

Medium 0.60 0.53 0.56

Over cap 0.69 0.75 0.72

Accuracy on the train set 0.63

Validation Set

Low 0.72 0.58 0.64

Medium 0.48 0.44 0.46

Over cap 0.12 0.50 0.20

Accuracy on the validation set 0.52

Decision
tree

Train Set

Low 0.58 0.60 0.59

Medium 0.58 0.48 0.53

Over cap 0.68 0.77 0.73

Accuracy on the train set 0.62

Validation Set

Low 0.71 0.58 0.64

Medium 0.48 0.43 0.45

Over cap 0.12 0.48 0.19

Accuracy on the validation set 0.52

Random
forest

Train Set

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set

Low 0.67 0.78 0.72

Medium 0.50 0.40 0.44

Over cap 0.27 0.12 0.17

Accuracy on the validation set 0.61
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Table 6.2: Model evaluation for Random Forest model for 4Sep2010, 22Feb2011,
13June2011, and 23Dec2011

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Random
forest
4Sep2010

Train Set

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set

Low 0.67 0.78 0.72

Medium 0.50 0.40 0.44

Over cap 0.27 0.12 0.17

Accuracy on the validation set 0.61

Random
forest
22Feb2011

Train Set

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set

Low 0.62 0.51 0.56

Medium 0.51 0.68 0.58

Over cap 0.55 0.32 0.41

Accuracy on the validation set 0.54

Random
forest
13Jun2011

Train Set

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set

Low 0.58 0.65 0.61

Medium 0.47 0.43 0.45

Over cap 0.20 0.06 0.10

Accuracy on the validation set 0.53

Random
forest
23Dec2011

Train Set

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set

Low 0.70 0.84 0.77

Medium 0.24 0.13 0.17

Over cap 0.00 0.00 0.00

Accuracy on the validation set 0.63
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6.8 Conclusion

This chapter described the necessary data pre-processing and the machine learning

development process. First, the EQC features were filtered to retain only claims that

have been settled and related to single dwellings only. Outlier instances and categories

with too few instances were removed and regarded beyond scope as those could have

negatively affected the model performance. The target variable BuildingPaid was filtered

and transformed into a categorical variable according to the thresholds of payments

defined by EQC. Once filtered, the new categorical attribute was selected for the model

development. Special attention was applied to ensure attributes selected do not related

to any earthquake in particular to maximise the chance of generalisation. The data set

was then divided into a training and a validation set. Categorical and numerical features

were put in a form useable by machine learning algorithms. A solution to address

class imbalance was introduced. Finally, several supervised algorithms for classification

were selected, trained, and their performance evaluated. Following the thorough data

preparation process and careful model development, random forest was deemed the

best performing algorithm which achieved an accuracy of 0.61 on the 4 September 2010

validation set.



CHAPTER 7
Model testing and knowledge

extraction from the seismic loss

prediction model for Christchurch

residential buildings

This chapter documents the testing of the machine learning model developed in the past

two chapters. The model generalisation and prediction performance are tested against

data from other main events of the CES. The chapter also presents insights derived from

the machine learning model.

7.1 Introduction

Seismic damage and loss models are developed to estimate consequences from probable

future earthquake events. A key consideration is the ability of the model to be generalised

for unknown events. Thus, each machine learning model developed previously using

training data from one earthquake in the CES is tested against data from the three other

main events. Besides the prediction, the development of the machine learning model

also reveals relationships between the model attributes. The relationship of numerical

variables is analysed and presented via pairplots. Then the relationships of Building Paid
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with each model attribute are studied. The influence of liquefaction is carefully examined

as it has a strong influence on the distribution of the building losses especially for the 22

February 2011 event. Finally, a post-hoc method (SHAP) is applied to the Random Forest

algorithm to derive the features importance of the model.

Results show that PGA is selected by machine learning as the most important feature

for each model. For the 22 February 2011 event, the liquefaction occurrence stands out

as the second important feature. This is particularly novel as the machine learning

process only analysed empirical data and it delivers these insights without any prior

engineering knowledge about loss mechanisms or physics. These findings corroborate

current earthquake engineering knowledge. This highlights the benefits of interpretable

machine learning to derive new actionable insights.

7.2 Model testing on another event in the CES

The previous chapter presented the model development and training for each of the main

earthquake events in the CES (4 September 2010, 22 February 2011, 13 June 2011, and

23 December 2011). The random forest algorithm performed the best for all the events.

Figure 6.29 in section 6.5.1 showed the process for the model development. Each model

is tested here on instances from the three other main events of the CES.

Figure 7.1a and Figure 7.1d show the confusion matrix for the random forest model

for the 4 September 2010 and 22 February 2011 validated on the same event respectively.

Figure 7.1b shows the confusion matrix for the random forest model developed with the

4 September 2010 data and tested on the 22 February 2011 instances. Figure 7.1c presents

the confusion matrix for the random forest model developed with the 22 February

2011 data and tested on the 4 September 2010 instances. For each confusion matrix, the

diagonal in the green area represents the correct predictions. The top integer numbers

in each of the upper left boxes display the number of instances predicted, and the

percentage in the bottom rows represent that instance as a percentage of the population.

The closest the value on the diagonal sum to 100%, the better the prediction. Mistakenly

predicted instances are shown off the diagonal. Figure 2.27 in section 2.9.1 summarises

the interpretation of a confusion matrix.
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(a) 4 September 2010 model tested on 4
September 2010

(b) 4 September 2010 model tested on 22
February 2011

(c) 22 February 2011 model tested on 4
September 2010

(d) 22 February 2011 model tested on 22
February 2011

Figure 7.1: Confusion matrices for the random forest algorithm
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Table 7.1 to Table 7.4 present the full data on the performance of the random forest

models trained on the claims data from one event and tested on the other CES events.

Comparing the performance of each model on the different main earthquakes in the CES,

the model for the 22 February 2011 event stood out. Despite the limited performance

on the validation set, the model trained with data from the 22 February 2011 event

achieved the best performance on the three other mains events (taking into account

accuracy and the F1-score for each class) hinting at a better model generalisability.

The larger sample size, especially for the category “over cap” (see Figure 6.19b), and

better distribution between the categories of BuildingPaid, which did not require the

application of sampling techniques to overcome class imbalance, might have influenced

the higher generalisation ability of the model trained on data from the 22 February 2011

event.
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Table 7.1: Random forest model for the 4 September 2010 tested on the 22 February 2011,
13 June 2011, and 23 December 2011

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Random
forest

Train Set
4Sep2010

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set
4Sep2010

Low 0.67 0.78 0.72

Medium 0.50 0.40 0.44

Over cap 0.27 0.12 0.17

Accuracy on the validation set 0.61

Test Set
22Feb2011

Low 0.36 0.76 0.48

Medium 0.47 0.33 0.39

Over cap 0.34 0.05 0.09

Accuracy on the test set 0.39

Test Set
13Jun2011

Low 0.57 0.64 0.60

Medium 0.45 0.37 0.40

Over cap 0.04 0.05 0.05

Accuracy on the test set 0.50

Test Set
23Dec2011

Low 0.70 0.72 0.71

Medium 0.29 0.26 0.27

Over cap 0.00 0.00 0.00

Accuracy on the test set 0.58
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Table 7.2: Random forest model for the 22 February 2011 tested on the 4 September 2010,
13 June 2011, and 23 December 2011

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Random
forest

Train Set
22Feb2011

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set
22Feb2011

Low 0.62 0.51 0.56

Medium 0.51 0.68 0.58

Over cap 0.55 0.32 0.41

Accuracy on the validation set 0.54

Test Set
4Sep2010

Low 0.66 0.82 0.73

Medium 0.52 0.37 0.43

Over cap 0.07 0.00 0.00

Accuracy on the test set 0.62

Test Set
13Jun2011

Low 0.62 0.49 0.55

Medium 0.46 0.59 0.52

Over cap 0.12 0.11 0.11

Accuracy on the test set 0.52

Test Set
23Dec2011

Low 0.71 0.80 0.75

Medium 0.29 0.20 0.24

Over cap 0.00 0.00 0.00

Accuracy on the test set 0.62
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Table 7.3: Random Forest model for the 13 June 2011 tested on the 4 September 2010, 22
February 2011, and 23 December 2011

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Random
forest

Train Set
13Jun2011

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set
13Jun2011

Low 0.58 0.65 0.61

Medium 0.47 0.43 0.45

Over cap 0.20 0.06 0.10

Accuracy on the validation set 0.53

Test Set
4Sep2011

Low 0.60 0.71 0.65

Medium 0.39 0.33 0.36

Over cap 0.04 0.00 0.01

Accuracy on the test set 0.54

Test Set
22Feb2011

Low 0.35 0.65 0.46

Medium 0.46 0.44 0.45

Over cap 0.36 0.02 0.03

Accuracy on the test set 0.40

Test Set
23Dec2011

Low 0.71 0.76 0.73

Medium 0.29 0.24 0.26

Over cap 0.00 0.00 0.00

Accuracy on the test set 0.61
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Table 7.4: Random forest model for the 23 December 2011 tested on the 4 September 2010,
22 February 2011, and 13 June 2011

Algorithm Set Prediction targets Precision Recall F1 score Accuracy

Random
forest

Train Set
22Feb2011

Low 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Over cap 1.00 1.00 1.00

Accuracy on the train set 1.00

Validation Set
23Dec2011

Low 0.70 0.84 0.77

Medium 0.24 0.13 0.17

Over cap 0.00 0.00 0.00

Accuracy on the validation set 0.63

Test Set
4Sep2010

Low 0.59 0.90 0.71

Medium 0.37 0.10 0.16

Over cap 1.00 1.00 1.00

Accuracy on the test set 1.00

Test Set
22Feb2011

Low 0.31 0.94 0.46

Medium 0.45 0.08 0.13

Over cap 0.08 0.00 0.00

Accuracy on the test set 0.32

Test Set
13Jun2011

Low 0.55 0.89 0.68

Medium 0.46 0.13 0.21

Over cap 0.00 0.00 0.00

Accuracy on the test set 0.54
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7.3 Relationship between numerical variables

Among the nine input model attributes (see Figure 6.18), three are numerical: Floor Area,

ConstructionYear, and PGA. Figure 7.2 to Figure 7.5 show the relationship between the

numerical attributes for the four key events in the CES. The figures are colour coded to

highlight actual Building Paid Categories and a green-red colour code is used to denote

the presence of liquefaction. The graphs on the diagonal present the data distribution as

a layered kernel density estimate (KDE).

As shown by the graphs in the upper left corner and middle, the distribution of the

floor area and construction year is relatively similar between the four main events. Of

particular interest is the graph in the lower right corner showing the distribution of PGA

for each earthquake event. In combination with Figure 6.20, it is clear that for 4 September

2010 and 23 December 2011 events, most of the buildings suffered PGA values lower

than 0.40 g. Figure 7.5b appears to show a change in the peak PGA required to trigger

liquefaction during the 23 December 2011 earthquake. Interestingly for the 4 September

2010 and the 13 June 2011 events, the over cap claims were not necessarily associated with

the buildings that experienced the highest PGA values (see Figure 7.2a and Figure 7.4a

respectively).
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(a) Numerical attributes and Building Paid Categorical

(b) Numerical attributes and liquefaction

Figure 7.2: Pairplots for the numerical attributes - 4 September 2010
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(a) Numerical attributes and Building Paid Categorical

(b) Numerical attributes and liquefaction

Figure 7.3: Pairplots for the numerical attributes - 22 February 2011
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(a) Numerical attributes and Building Paid Categorical

(b) Numerical attributes and liquefaction

Figure 7.4: Pairplots for the numerical attributes - 13 June 2011
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(a) Numerical attributes and Building Paid Categorical

(b) Numerical attributes and liquefaction

Figure 7.5: Pairplots for the numerical attributes - 23 December 2011
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7.4 Feature importance from the random forest model

7.4.1 SHAP feature importance

The SHapley Additive exPlanations (SHAP) post-hoc method was applied on the

random forest models for analysing the relative influence of the different input variables.

Figure 7.6 to 7.9 show the SHAP feature importance for the random forest models trained

on the four key events in the CES in chronological order.

Table 7.5 summarises the five most important features for each model. PGA stands

out as being the most important feature for all models. The construction year and the

floor area of the building appear in the top five most important features for all events,

albeit at a different rank depending on the event.

The liquefaction occurrence is second for 22 February 2011 model and fourth for 4

September 2010 model. The soil type Recent Fluvial (RFW) also plays a significant role

for the 4 September 2010, 22 February 2011, and 13 June 2011.

Table 7.5: Five most important features according to the SHAP values for the random
forest model

Feature
rank

4 Sep 2010 22 Feb 2011 13 Jun 2011 23 Dec 2011

1 PGA PGA PGA PGA

2 Construction
Year

Liquefaction Floor Area Floor Area

3 Floor Area Soil - RFW Construction
Year

Construction
Year

4 Liquefaction Floor Area Soil - RFW Floor Type –
Concrete slab

5 Soil - RFW Construction
Year

Deprivation
Index

Soil - PPX
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Figure 7.6: SHAP feature importance for the random forest model (4 September 2010)

Figure 7.7: SHAP feature importance for the random forest model (22 February 2011)
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Figure 7.8: SHAP feature importance for the random forest model (13 June 2011)

Figure 7.9: SHAP feature importance for the random forest model (23 Dec 2011)
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7.4.2 Discussion of the results

The study of the feature importance of the machine learning models seems to

distinguished two types of event: shaking dominated events (4 September 2010, 13

June 2011, and 23 December 2011) and liquefaction dominated (22 February 2011). The

influence of PGA on the residential building losses is highlighted for the all the key

events of the CES. This validates the probabilistic seismic loss estimation methodology

which relies on PGA and the spectral acceleration at selected periods as intensity

measures (IM) as the key input. It is satisfying to observe that machine learning, which

has no physical understanding or prior knowledge related to building damage and loss,

is capable of capturing the importance of PGA from empirical data alone.

For the shaking dominated events the three main important features are similar

(PGA, building year of construction, and building floor area) only in a different order.

Any feature following those three main ones show a limited importance.

The year of construction appears second for the 4 September 2010 event and appears

of significant importance for the 13 June 2011 and 23 December 2011 events. However,

it is only fifth for the 22 February 2011 event (see Figure 7.7). This seems to highlight

the importance of the construction year for shaking dominated events. It is possible that

the feature ConstructionYear captures information related to the evolution of the seismic

codes.

For the 22 February 2011, PGA significantly stands out. It is followed by the

liquefaction occurrence and soil type pointing out the importance of liquefaction on

building damage. It thus seems that the damage and losses due to the 22 February 2011

event were driven by liquefaction. This result corroborates the findings from previous

studies, which highlighted the influence of liquefaction on building damage (Rogers et

al., 2015; J. Russell & van Ballegooy, 2015).
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7.5 Conclusion

This chapter presented the testing of the machine learning model previously developed

and findings extracted from machine learning model. The model testing showed that

despite the limited model accuracy on the validation set, the model developed using the

22 February 2011 claims data was the one that fitted best the 4 September 2010 and 23

December 2011 events. Despite the relatively limited prediction accuracy on unseen data,

this made the model trained on the 22 February 2011 data the more generalisable.

The interaction between the numerical variables of the model was studied. Pairplots

presented the relationship between PGA, the floor area, and the year of construction.

Then, the SHAP method was applied to obtain the feature importance from the random

forest models developed for the four main events of the CES. For all the models, PGA

stood out as the most important feature. The building floor area, the construction year,

and soil were among the five most important features for the four key events. The SHAP

method also extracted the liquefaction as the second most important feature for the 22

February 2011 model, thus highlighting the influence of liquefaction on building losses

for this event.



CHAPTER 8
Conclusions

This study aimed to enhance scientists and engineers ability to make prediction on

the impact of earthquakes. This led to endeavours which included the examination of

existing frameworks for post-earthquake data collection in generating better empirical

data, and the potential use of machine learning models as a new rapid and adaptive tool

to transform empirical seismic damage and loss data impact insights.

To this end, this research i) reviewed current assessment forms for building damage,

ii) explored current data science techniques especially machine learning, iii) proposed

a new paper form for the building damage assessment based on the GEM building

taxonomy v2.0, iv) applied machine learning to seismic damage data of building

collected following the 2017 Puebla earthquake, v) merged additional information

on top of EQC’s claims data set for the 2010-2011 Canterbury earthquake sequence,

vi) developed a seismic loss prediction model for residential buildings in Christchurch,

and vii) presented findings and insights generated from the application of data science

techniques to the previously merged data set and machine learning model.

8.1 Post-earthquake damage data collection

Chapter 2 reviewed the current practice in seismic damage assessment. It surveyed

post-earthquake damage collection forms that are currently used for the assessment

of seismic building damage. It found that most of the forms were developed for a
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geographical region in particular and focused on structural building damage and often

omitted non-structural components.

To allow for better flexibility in the damage assessment between regions and offer

the opportunity to collect information about non-structural elements, a new paper form

was developed and introduced in Chapter 3. This new paper form is based on the

GEM Building taxonomy v2.0 and expresses seismic building damage according to

the European Macroseismic Scale EMS-98. It also allowed for recording non-structural

component damage observations.

Following the 2017 Puebla earthquake, the form was trialled on twenty-five buildings

in Calle La Morena, Mexico City. The use of the European Macroseismic Scale EMS-98

and GEM Building taxonomy v2.0 brought consistency in the building damage data

collected on site. Building damage statistics were presented via dashboards to aid

comprehensive damage data understanding and facilitating the derivation of useful

insights.

8.2 Machine learning for the seismic damage prediction for

residential buildings in the Roma and Condesa

neighbourhoods, Mexico City

Chapter 4 presented a case study for the development of a damage prediction model

using machine learning. It used empirical data collected following the 2017 Puebla

Mexico earthquake. Building characteristics and the damage grade was available for

237 buildings located in the Roma and Condesa neighbourhoods in Mexico City. The

building damage was complemented with information on the seismic demand derived

from recording stations. The data was then pre-processed to be usable by machine

learning algorithms. Four machine learning algorithms were applied: logistic regression,

support vector machine, decision tree, and random forest. Random forest, the best

performing algorithm, achieved 67% prediction accuracy.

In order to derive insights from the model, a post-hoc method was applied to the

random forest algorithm. The SHAP feature importance highlighted that the building
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location (latitude and longitude), the PGA, and the building height are the parameters

that most influenced the model output.

8.3 Machine learning for the seismic loss prediction for

residential buildings in Christchurch, New Zealand

Chapter 5 to Chapter 7 presented the development of a seismic loss prediction model

using the EQC insurance claims data of residential buildings. The data set entails more

than 433,500 claims pertaining to the 2010-2011 Canterbury earthquake sequence. It was

found that not all the instances related to claims were settled or approved. Additionally,

critical information related to the building characteristics were missing for more than

85% of the instances. This led to the necessity to complement these attributes with

information from additional databases such as the RiskScape New Zealand Building

inventory. A new approach to merge the claims data with the building information had

to be found as the RiskScape data set and EQC data set do not share a common field

apart from the geographic location (latitude and longitude).

The final proposed approach used the LINZ NZ property titles and LINZ NZ street

address as an intermediary for the data integration. It was then possible to constrain

the merging to property boundaries. While this approach improved the quality of the

merged data as instances related to neighbouring properties were excluded, limitations

still remained. One of the limitations relates to the RiskScape data set as it included

residential dwelling as well as secondary buildings. This was eventually overcome

through additional logic including the use of property boundaries and footprint area

data. Following the merging between EQC and RiskScape, additional information related

to the seismic demand, liquefaction occurrence, and soil conditions were added.

Once merged, the data set was filtered and pre-processed to enable the application of

machine learning. The target attribute, BuildingPaid, was transformed from a numerical

to a categorical variable. The model attributes were selected. After the preparation of

the categorical and numerical features, four machine learning models were trained using

data from four key events in the CES. Random forest achieved the best performance

accuracy for all events. The prediction accuracy for random forest ranged from 0.53 on
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the 13 June 2011 event validation set to 0.63 on the 23 December 2011 event validation

set. Possible reasons for the limited model accuracy include the limited information in

the raw data set, class imbalance, and the selection of model attributes.

The models were then assessed for their ability to generalise through testing on

data pertaining to another event in the CES. The model for the 22 February 2011 only

reached 0.54 on the validation set but generalised best for other key events in the CES.

The better generalisation for the 22 February 2011 model might be related to size of the

earthquake event. With a larger sample size for the over-cap category it was not necessary

to apply oversampling techniques to address the class imbalance before the application

of machine learning.

Chapter 7 presented insights derived from the merged data set and machine

learning model. The random forest models were analysed for feature importance using

the SHAP post-hoc methodology. PGA was the most important feature for the four

models developed across the different machine learning models. This validates current

probabilistic approaches for the seismic damage and loss assessment such as the PBEE

where PGA or the spectral acceleration at selected period can be used as intensity

measure. The feature importance delivered insights related to the parameters that affect

building losses the most.

Machine learning applied to seismic damage and loss data delivers valuable insights.

It enables to make use of empirical data to obtain useful insights without the need

of complex and time-consuming methodologies. The insights are not only useful for

the insurance sector but also for engineers, risk managers, emergency planners, and

government to better understand critical damage drivers.

8.4 Current challenges in the application of machine learning

for the prediction of seismic damage and loss

In recent year, the application of machine learning to various tasks has grown

significantly. This growth can to some extent be linked to the increase in computer

power and advance in research related to machine learning algorithms which enable the

application of machine learning to more complex tasks. However, one of the key points
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for the successful application of machine learning is the availability of data. A machine

learning algorithm can only properly “learn” from data if there are enough instances

in the training set. In many problems with complex relationships within the model

attributes, the larger the data set, the better the model performance as the algorithm has

seen enough examples to “learn” and generalise the relationships between the model

attributes.

With 27,932 instances available for model training for the 4 September 2010 event,

27,479 for the 22 February 2011 event, 6,736 for the 13 June 2011 event, and 4,743 for the

23 December 2011 event the data sets in this study can be considered as “large” from

a civil engineering perspective. Nevertheless, machine learning models, especially the

ones relying on sophisticated algorithms, may require significantly more data to properly

execute and be able to generalise.

The EQC claims data for residential building was initially collected for insurance

purposes and not with the intent to develop of a seismic loss prediction model through

machine learning. For best machine learning performance, data must not have missing

features. This was not always possible due to the nature of earthquake events, and also

there is doubt on the reliability on data collected on-site. The data integration with

other database enabled the addition of building characteristics as well as additional

information related to the seismic demand, liquefaction occurrence, and soil conditions.

The issues faced during the merging of the EQC data set with RiskScape building

characteristics and LINZ information highlighted the need for an improved solution to

identify each building in New Zealand. It is believed that the establishment of a unique

building identifier common to several databases will introduce consistency, thus opening

new opportunities for the application of data science techniques and the derivation of

insights.

At the time of the CES, EQC only provided building coverage up to NZ$100,000

(+GST) which led to the EQC data set being capped at NZ$115,000. Losses above

the NZ$115,000 threshold were covered by private insurers, given that the building

owner subscribed to appropriate private insurance. Any detail for building loss above

NZ$115,000 was not available for this study. The access to data from private insurances

would enlarge the range of BuildingPaid giving more information on the buildings which
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suffered significant losses.

The prediction accuracy also depends on the attributes present in the model.

Attributes that might have influenced the value of the building losses might not be

present in the current model. Thus, it would be of interest to study the influence of

additional attributes on the model performance.

8.5 Future work and opportunities

Chapter 6 highlighted the importance of data pre-processing. A more in depth analysis

of the actual value of BuildingPaid might bring an improved model performance. Taking

into account apportionment between the events in the CES would provide a more

accurate allocation of loss to each event and enable to capture more details about over

cap instances.

To mitigate issues related to sequential damage throughout the CES, the data could be

segregated by geographical area where the majority of damage occurred for each event.

This might lead to a "cleaner" train set and thus might deliver more accurate predictions.

In order to better understand generalisation errors, different test sets might

be employed in future work. Possibilities for other test sets include: holdouts by

geographical area, soil type, year of building construction, and random sampling.

In addition to opportunities related to the available data, new attributes could be

included. Once developed, a machine learning pipeline can be retrained with limited

efforts. This facilitates future studies employing different combinations of building

parameters. Any attribute that is deemed impactful on the building loss could be added

in the model. Different attributes and their influences on building losses could be

tested. For example, the introduction of additional parameters related to properties and

social factors might deliver an improved model accuracy as well as new insights. The

importance of the new attribute could then be studied via the feature importance of the

random forest model.

Finally, the machine learning model can also be retrained whenever new claim data

becomes available from a future earthquake. The new data could yield improvement in

the accuracy of the loss prediction model.
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Table A.1: Overview of the main loss databases, adapted from (Integrated Research on Disaster Risk, 2014)

EM-DAT NatCatSERVICE Sigma explorer GLIDE DesInventar SHELDUS
Owner Centre for Research

on the Epidemiology
of Disasters (CRED),
Université Catholique
de Louvain, Belgium

Munich Re, Germany Swiss Re, Switzerland Asian Disaster
Reduction Center
(ADRC), Japan

Varies by country Hazards and
Vulnerability
Research Institute
(HVRI), University of
South Carolina, USA

Web link emdat.be NatCatSERVICE sigma-explorer.com glidenumber.net desinventar.org sheldus.org
Spatial
Coverage

Global Global Global Global National National

Spatial
Resolution

Country Country Country Country County, municipality U.S. county

Data sources U.N agencies,
IFRC, World Bank,
reinsurers, press,
news agencies

Property claims
service, insurance
clients, U.N agencies,
World Bank, press

U.N agencies,
IFRC, World Bank,
reinsurers, press,
news agencies

U.N agencies,
weather services,
geological services,
press

U.S. National
Climatic Data Center,
National Geophysical
Data Center, U.S.
Geological Survey
(USGS)

Recording
Thresholds

≥10 fatalities,
≥100 affected,
declaration of state
of emergency, or
call for international
assistance

≥10 fatalities,
≥100 affected,
declaration of state
of emergency, or
call for international
assistance

≥1 human loss or
≥US$1 in economic
loss

≥1 human loss or
≥US$1 in economic
loss

Hazard coverage
Geophysical 3 3 3 3 3 3

Hydrological 3 3 3 3 3 3

Meteorological 3 3 3 3 3 3

Climatological 3 3 3 3 3 3

Biological 3 3 3

Technological 3 3 3 3

Loss indicators
Fatalities 3 3 3 3 3

Aggregated
economic loss

3 3 3 3

Insured loss 3 3

https://www.emdat.be/
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
https://www.sigma-explorer.com/
https://glidenumber.net/glide/public/search/search.jsp
https://www.desinventar.org/
https://cemhs.asu.edu/SHELDUS/
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B.1 ATC-20 Detailed Evaluation Safety Assessment Form



ATC-20 Detailed Evaluation Safety Assessment Form

General Comments:

Inspection

Inspector ID:

Affiliation: 

Building Description

Evaluation

Continue on page 2

Type of Construction

Building name: 

Address: 

Building contact/phone:

Approx. “Footprint area” (square feet): 

Number of residential units: 

PMAM

Primary Occupancy

SevereModerateMinor/None Comments

Wood frame
Steel frame
Tilt-up concrete 
Concrete frame

Dwelling
Other residential
Public assembly
Emergency services

Overall hazards: 
Collapse or partial collapse
Building or story leaning
Other 

Other 

Structural hazards: 
Foundations
Roofs, floors (vertical loads)
Columns, pilasters, corbels
Diaphragms, horizontal bracing
Walls, vertical bracing
Precast connections

Other 

Other 

Nonstructural hazards:
Parapets, ornamentation

Geotechnical hazards:
Slope failure, debris
Ground movement, fissures

Cladding, glazing
Ceilings, light fixtures
Interior walls, partitions
Elevators
Stairs, exits
Electric, gas

Concrete shear wall
Unreinforced masonry
Reinforced masonry

Inspected

Final Posting 
from page 2

Restricted Use
Unsafe

Other: _______________

Commercial
Offices
Industrial

Government
Historic
School

Other: _______________

Inspection date and time:

Investigate the building for the conditions below and check the appropriate column. There is room on the second page for a 
sketch. 

Number of stories above ground: below ground:

Number of residential units not habitable: 



ATC-20 Detailed Evaluation Safety Assessment Form                  Page 2

Inspector ID:

Posting

Further Actions  Check the boxes below only if further actions are needed. 

INSPECTED (Green placard)

Building name: 

None

Barricades needed in the following areas: 

Engineering Evaluation recommended: Structural Geotechnical Other: 

0–1%
1–10%
10–30%
30–60%
60–100%
100%

INSPECTEDPrevious posting: RESTRICTED USE UNSAFE    Inspector ID: __________  Date:______

RESTRICTED USE (Yellow placard) UNSAFE (Red placard)

Other recommendations: 

Record any use and entry restrictions exactly as written on placard: 

If necessary, revise the posting based on the new evaluation and team judgment. Severe conditions endangering the overall 
building are grounds for an Unsafe posting. Local Severe and overall Moderate conditions may allow a Restricted Use posting. 
Indicate the current posting below and at the top of page one. 

If there is an existing posting from a previous evaluation, check the appropriate box. 

Estimated Building Damage

If requested by the jurisdiction, 
estimate building  damage (repair 
cost ÷ replacement cost, excluding 
contents). 

Sketch (optional)

Provide a sketch of the building or 
damaged portions. Indicate damage 
points. 

Comments:

© Copyright 1995-07, Applied Technology Council.
Permission is granted for unlimited, non-exclusive, non-commercial use and distribution of ATC evaluation forms, provided that this Copyright Notice appears on all copies and the Applied 
Technology Council name shall not be used in any advertising or publicity of Licensee product. Permission is further subject to the following conditions: (1) Licensee does not reprint, repackage 
or offer this form for sale or license; and (2) no material gain or financial profit is to be made from any sale or license of this form. Placards may be used without restrictions for their intended use 
as building postings. All rights not specifically granted to Licensee are herein reserved by ATC.
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B.2 GEM paper based assessment tool



  

  



  

  

2 
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B.3 New paper form for the seismic assessment of building

based on GEM Building Taxonomy v2.0



Project Completed by Date       /       /  

Seismic Assessment based on GEM Building Taxonomy v2.0

Project ________________________________________________________________________________ Date ______/______/____________ (dd/mm/yyyy)

Inspection time Areas inspected

Start (local time) _______ : _______ (hh/mm) Inspection duration _____________  (min) Exterior and interior

Exterior only

Completed by ___________________________________________________________________________

Function Structural eng. Architect

Building official Student

General building information

Building name ___________________________

Neighborhood ____________________________ City ____________________________________________ Zip/Pcode ___________________________________

State ____________________________________ Country _________________________________________

Coordinates Longitude X Latitude Y

Building information
OCCUPANCY Mixed use DATE OF CONSTRUCTION OR RETROFIT

Unknown occupancy type Mixed, unknown type Year unknown

Residential Mostly residential and commercial Exact date of construction or retrofit

Residential, unknown type Mostly commercial and residential Upper and lower bound for the date of construction 

Single dwelling Mostly commercial and industrial or retrofit: between __________and ___________

Multi-unit, unknown type Mostly residential and industrial Latest possible date of construction retrofit

2 Units (duplex) Mostly industrial and commercial Approximate date of construction or retrofit

3-4 Units Mostly industrial and residential

5-9 Units Industrial SHAPE OF THE BUILDING PLAN

10-19 Units Industrial, unknown type Unknown plan shape

20-49 Units Heavy industrial Square, solid

50+ Units Light industrial Square, with an opening in plan

Temporary lodging Assembly Rectangular, solid

Institutional housing Assembly, unknown type Rectangular, with an opening in plan

Mobile home Religious gathering L-shape

Informal housing Arena Curved, solid (e.g. circular, elliptical ovoid)

Commercial and public Cinema or concert hall Curved, with an opening in plan

Commercial and public, unknown type Other gatherings Triangular, solid

Retail trade Government Triangular, with an opening in plan

Wholesale trade and storage (warehouse) Government, unknown type Polygonal, solid (e.g. trapezoid, pentagon, hexagon)

Offices, professional/technical services Government, general services Polygonal, with an opening in plan

Hospital/medical clinic Governement, emergency response E-shape

Entertainment Education H-shape

Public building Education, unknown type S-shape

Covered parking garage Pre-school facility T-shape

Bus station School U- or C-shape

Railway station College/university, offices and/or classrooms X-shape

Airport College/university, research facilities and/or labs Y-shape

Recreation ans leissure Other occupancy type Irregular plan shape

Other (please sketch the building shape below)

BUILDING POSITION IN A BLOCK NUMBER OF STORY

Unknown building position Number of storeys unknown

Detached building Number of storeys above ground

Adjoining building(s) on one side Range of number of storeys above ground _______    _______

Adjoining building(s) on two sides Exact number of storeys above ground _______

Adjoining buildings on three sides Approximate number of storeys above ground _______

Corner building Number of storeys below ground

BUIILDING HEIGHT Number of storeys below ground unknow

Height in meters _________ m Range of number of storeys below ground _______    _______

Building tilt Exact number of storeys below ground _______ EXPOSURE AND CONSEQUENCES

Approximate number of storeys below ground _______ Number of Day Occupants

Height of ground floor level above grade Number of Night Occupants

Height of ground floor level above _______ Number of Transit Occupants

Range of height of ground floor level above grade _____   _____ Number of Dwelling

Exact height of ground floor level above grade _______ Plan Area (m^2)

Approximate height of ground floor level above grade _______ Replacement cost (per m^2)

Slope of the ground Number of Fatalities

Slope of the ground unknown Number of Injured

Slope of the ground _______ Number Missing

General building damage Damage to building of reinforced concrete Damage to masonry buildings

Grade1: Negligible to Slight Damage (<10%) Grade 1: Negligible to slight damage Grade 1: Negligible to slight damage

Grade 2: Moderate Damage (10-30%) (no structural damage, slight non-structural damage) (no structural damage, slight non-structural damage)

Grade 3: Susbtantial to Heavy Damage (30-60) Fine cracks in plaster over frame members or in walls at the base. Hair-line cracks in very few walls. Fall of small pieces of 

Grade 4: Very Heavy Damage (60-90%) Fine cracks in partitions and infills. plaster only. Fall of loose stones from upper parts of

Grade 5: Destruction (>90%) buildings in very few cases.

Grade 2: Moderate damage

Is there localised damage? (slight structural damage, moderate non-structural damage) Grade 2: Moderate damage

No Cracks in columns and beams of frames and in structural walls. (slight structural damage, moderate non-structural damage)

Yes (if yes please precise floor nb, location) Cracks in partition and infill walls; fall of brittle cladding and plaster. Cracks in many walls. Fall of fairly large pieces of plaster.

Floor number: Falling mortar from the joints of wall panels. Partial collapse of chimneys.

Location:

Grade 3: Substantial to heavy damage Grade 3: Substantial to heavy damage

(moderate structural damage, heavy non-structural damage) (moderate structural damage, heavy non-structural damage)

Cracks in columns and beam column joints of frames at the base Large and extensive cracks in most walls.

and at joints of coupled walls. Spalling of conrete cover, buckling Roof tiles detach. Chimneys fracture at the roof line;

of reinforced rods. Large cracks in partition and infill walls, failure failure of individual non-structural elements (partitions, 

of individual infill panels. gable walls).

Grade 4: Very heavy damage Grade 4: Very heavy damage

(heavy structural damage, very heavy non-structural damage) (heavy structural damage, very heavy non-structural damage)

Large cracks in structural elements with compression failure of Serious failure of walls;

concrete and fracture of rebars; bond failure of beam reinforced  partial structural failure of roofs and floors.

bars; tilting of columns.

Collapse of a few columns or of a single upper floor.

Grade 5: Destruction Grade 5: Destruction

(very heavy structural damage) (very heavy structural damage)

Collapse of ground floor or parts (e. g. wings) of buildings. Total or near total collapse.

Street name and nb ________________________________________________________________________________________________________
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Project Completed by Date                /                /                        

Non‐structural elements

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Cast in place concrete Parapet cracking
Hollow concrete block Parapet crushing
Solid concrete block Parapet locally falling out
Hollow fired clay block Parapet collapsed
Solid brick Non‐structural wall cracking

Sesimic performance features Non‐structural wall crushing
No reinforcement Non‐structural wall locally falling out
Steel reinforcement Non‐structural wall collapsed

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Wood frame Cracking

Steel frame Frame distortion
Aluminium frame Fall out
Other: Other:

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Prefabricated steel Non structural damage, local steel yielding
Precast concrete Local concrete cracking, localized concrete spalling
Cast‐in‐place concrete Localized steel yielding
Other: Buckling of steel, weld cracking

Sesimic performance features Extensive concrete cracking, concrete crushing
Particular connection detailling Extensive concrete cracking, concrete crushing, buckling of rebar

Loss of live load capacity.  Connection and or weld fracture
Loss of live load capacity.  Extensive concrete crushing, connection failure
Loss of live load capacity

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Gypsum with metal stud Non structural damage, local steel yielding
Gypsum with wood studs Local concrete cracking, localized concrete spalling
Gypsum + Wallpaper Localized steel yielding
Gypsum + Ceramic Tile Buckling of steel, weld cracking.

Sesimic performance features Extensive concrete cracking, concrete crushing
Fixed above Extensive concrete cracking, concrete crushing, buckling of rebar
Lateral braced above Loss of live load capacity.  Connection and or weld fracture
Fixed below Loss of live load capacity.  Extensive concrete crushing, connection failure

Loss of live load capacity
Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Wood Cracking

Metal Crushing

Frame distortion
Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Vertical support only 5 % of ceiling grid and tile damage

Vertical and Lateral support 30% of ceiling grid and tile damage

Sesimic performance features 50% of ceiling grid and tile damage

Braced Dropped acoustical tile
Unbraced Perimeter damage

Separation of runners
Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Plasterboard Cracking

Drywall Local spalling
Other: Collapse

Other:

Total cost to repair this component $

NON‐SUSPENDED CEILINGS

SUSPENDED CEILINGS

NON‐STRUCTURAL WALL/ PARAPETS

EXTERIOR WINDOWS/GLAZING

STAIRS

WALL PARTITION

DOORS
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Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Stone Failling from building
Tile Damaged panels and conncetions
Glass Crush

Other Other:

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Traction geared Controller anchorage failed, and or machine anchorage failed, and or motor generator 
anchorage failed, and or governor anchorage failed, and or rope guard failures.
Rail distortion, and or intermediate bracket separate and spread, and or counterweight bracket 
break or bend, and or car bracket break or bend, and or car guide shoes damaged, and or 
counterweight guide shoes damaged, and or counterweight frame distortion, and or tail sheave 
dislodged and/or twisted
Cab stabilizers bent, or cab walls damaged, or cab doors damaged.

Cab ceiling damaged.

Hydraulic Damaged controls.
Damaged vane and hoist‐way switches, and or bent cab stabilizers, and or damaged car guide 
shoes.

Damaged entrance and car door, and or flooring damage.

Oil leak in hydraulic line, and or hydraulic tank failure.
Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Plastic Minor leakage at flange connections
Cupper Pipe Break
Steel Other:

Aluminium

Cast iron
Other:

Sesimic performance features

Braced

Unbraced

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Wet pipe Spraying & Dripping Leakage at joints
Dry pipe Joints Break ‐ Major Leakage

Other:

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Unit heater Sliding

Boiler Overturning. Broken/bent bolts
Other: Broken gas and exhaust lines

Sesimic performance features Loss of function
Unachored Other:

Anchored Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Packaged chiller Sliding

Rofftop air cond. Overturning. Broken/bent bolts
Other: Leaking refrigerant

Sesimic performance features Loss of function
Unachored Other:

Anchored Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Plastic Sliding

Steel Overturning

Other: Other:

Sesimic performance features

Unachored

Anchored Total cost to repair this component $

FLOOR FINISHES

ELEVATORS

PIPING

FIRE PROTECTION

HEATING SYSTEMS

COOLING SYSTEMS

DUCTS
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Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Incandescent
Disassembly of rod system at connections with horizontal light fixture, low cycle fatigue failure 
of the threaded rod, pullout of rods from ceiling assembly.

Neon Loss of function
Other: Other:

Sesimic performance features

Non seismic

Seismically rated Total cost to repair this component $

Does the building have this component? No
Yes (if yes, please fill the following information) Repair price

Type Type of damage

Diesel generator Damaged, inoperative. Pipes and nozzles damaged.

Petrol generator Anchorage failure.
Other; Damaged, inoperative but anchorage is OK. Pipes and nozzles damaged.

Sesimic performance features Damaged, inoperative. Drive shaft misalignment.

Unachored Anchorage failure & Equipment damaged beyond repair.
Anchored Damaged, inoperative. Minor electrical damage, e.g., failed relay.

Damaged, Inoperative but anchorage is OK
Damaged, inoperative. Exhaust line disconnected at expansion bellows.
Damaged, inoperative. Exhaust line disconnected at expansion bellows.
Equipment is damaged and inoperative but anchorage is OK.
Other:

Total cost to repair this component $

Does the building have this component? No
Yes (if yes, please fill the following information) Repair price

Material Type of damage

Plastic Pipe break
Metal Tank or vessel rupture
Other: Other:

Sesimic performance features

Unachored

Anchored Total cost to repair this component $

Does the building have this component? No
Yes (if yes, please fill the following information) Repair price

Type Type of damage

Fixed artwork Only sliding, no damage

Fixed casework Cracks and crushing. Minor damage.

Other: Damaged, loss of function
Sesimic performance features Other:

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Material Type of damage

Wood Bookcase slides. Some content fall over. No damage to the bookcase
Metal Book case falls over and contents are scattered.  Likely damage to bookcase.  
Other Other:

Sesimic performance features

Unachored laterally
Anchored laterally Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Wood Sliding. Some content fall over. No damage to the bookcase
Metal Filing cabinet falls over and contents are scattered.  Likely damage to file cabinet.  
Other: Other:

Sesimic performance features

Unachored

Anchored Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Wood Sliding. Some content fall over. No damage to the bookcase
Metal Filing cabinet falls over and contents are scattered.  Likely damage to file cabinet.  
Other: Other:

Sesimic performance features

Unachored

Anchored Total cost to repair this component $

POWER GENERATORS

TANKS

BOOKCASE

FILING CABINET

DESK

FIXED FURNISHINGS

LIGHTING
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Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Fixed artwork Only sliding, no damage

Fixed casework Cracks and crushing. Minor damage.

Other: Damaged, loss of function
Sesimic performance features Other:

Total cost to repair this component $

Does the building have this component? No

Yes (if yes, please fill the following information) Repair price

Type Type of damage

Cathodic panel display Only sliding, no damage

Flat panel display Cracks and crushing. Minor damage.

Other: Damaged, loss of function
Sesimic performance features Other:

Unachored

Anchored Total cost to repair this component $

Building owner contact information:

Name of contractors/sucbcontractors involved in the repairs:

Building sketch

Pictures (please indicate the name of the first and last picture taken for this building)

TV SETS

DESKTOP COMPUTER UNITS
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204 GEM Building Taxonomy v2.0

C.1 Overview of the GEM building taxonomy v2.0

Table C.1: Overview of the GEM building taxonomy v2.0 categories

Attribute
group

GEM
attribute
reference

Attribute Attribute levels Example options Example

Structural
system

1 Direction Direction of the
building

Building principal
axis parallel or
perpendicular to
street

Direction X
(longitudinal) Parallel
to street Enrique
Rebsamen

2 Material
of LLRS

Material type
(Level 1)

Concrete, steel, metal,
masonry, earth, wood

Material type:
Concrete reinforced

Material type
(Level 2)

Cast-in place,
precast, cold-formed,
hot-rolled

Material technology:
Cast-in place concrete

Material
properties
(Level 3)

No mortar, mud
mortar, cement mortar

Material properties:
Unknown

3
Lateral
Load
Resisting
System
(LLRS)

Type of lateral
load-resisting
system (Level 1)

Moment frame,
infilled frame, braced
frame

Type of lateral
load-resisting system:
Infilled frame

System ductility
(Level 2)

Ductile, non-ductile System ductility:
Unknown

Generic
building
information

4 Building
height

Height
expressed in
number of
storeys

Number of storeys
above ground, below
ground, height of
ground floor level
above grade

Exact number of
storeys above ground:
8

5 Date of
Construction
or Retrofit

Construction
or retrofit
completed

Exact date,
approximate date,
latest possible date of
construction or retrofit

Approximate date of
construction or retrofit:
1980

Occupancy
Building
occupancy
class - general
(Level 1)

Residential,
Commercial and
public, mixed use,
industrial

Building occupancy:
Residential

Building
occupancy
class - detail
(Level 2)

Single dwelling, 10-19
units, retail trade,
school

System ductility:
Unknown

Exterior
Attributes

7 Building
Position
within a block

Detached building,
adjoining buildings

Corner building

8 Shape of the
Building Plan

Plan shape
(footprint)

Rectangular solid,
rectangular with an
opening in plan,
L-shaped

Plan shape: L-Shape

9 Structural
Irregularity

Regular or
irregular (Level
1)

Irregular structure

Plan irregularity
or vertical
irregularity
(Level 2)

Plan irregularity
– primary, Plan
irregularity -
secondary

Two horizontal
structural
irregularities, one
vertical irregularity

Type of
irregularity
(Level 3)

Torsion eccentricity,
re-entrant corner,
soft storey, cripple
wall, short column,
pounding potential,
setback, change in
vertical structure

Torsion eccentricity
(primary horizontal),
re-entrant corner
(secondary
horizontal), soft storey
(primary vertical)

10 Exterior walls Exterior walls Concrete, glass,
vegetative exterior
wall

Concrete and masonry

Roof/
Floor/
Foundation 11 Roof

Roof shape
(Level 1)

Flat, pitched, curved Roof shape: Flat

Roof covering
(Level 2)

Concrete roof, without
additional covering,
membrane roof
covering

Roof covering:
Unknown
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Continuation of Table C.1
Attribute
group

GEM
attribute
reference

Attribute Attribute levels Example options Example

Roof/
Floor/
Foundation

Roof system
material (Level
3)

Masonry roof, concrete
roof

Roof system material:
Unknown

Roof system
type (Level 4)

Vaulted masonry,
cast-in-place beamless
reinforced concrete
roof

Roof system type:
Unknown

Roof
connections
(Level 5)

Roof tie-down present Roof connections:
Unknown

12
Floor

Floor system
material (Level
1)

Masonry floor,
concrete floor

Floor system material:
Unknown

Floor system
type (Level 2)

Shallow-arched
masonry floor,
wooden floor

Floor system type:
Unknown

Floor
connections
(Level 3)

Floor-wall diaphragm
connection present

Floor connections:
Unknown

13 Foundation
System

Foundation
System

Shallow/deep
foundation, with
lateral or no lateral
capacity

Foundation System:
Unknown
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C.2 Comparison of the GEM assessment methodology

Table C.2: Comparison of the GEM assessment methodology vs. the local Mexican
procedure

Categories Assessment based on the GEM
Building Taxonomy

Assessment following the local
Mexican procedure

Language of
survey

English Spanish

Building
taxonomy

Based on GEM Building Taxonomy
v2.0. Applicable to any region in the
world

No reference to a standard international
recognised building taxonomy.
Assessement follows general questions
about the building

Damage scale European Macro-seismic scale EMS-98 European Macro-seismic scale EMS-98
Structural system Distinguish between lateral and

transverse direction of the building.
Possible to define two building
lateral-load resisting systems for
two principle directions of the building

Only one structural system type noted,
no information collected for different
building directions

Structural system
material

Taxonomy captures a wide range of
building materials available worldwide
(e.g. earth or bamboo are included)
Confusion exist about classifying
concrete frames with masonry infills as
either concrete or masonry

General definition of the material
(concrete, masonry, steel). Good level of
details for concrete sub types

Structural
regularity

Definition of horizontal and vertical
irregularities with specific terms such
as torsion eccentricity, re-entrant corner,
soft storey

Subjective and non-specific definition
(good, intermediate, bad)

Non-structural
elements

Capture of damage to non-structural
elements. Assessment form is highly
detailed and complex

Assess general level of damage of
exterior (e.g. windows, façade, balcony)
and internal (e.g. partition walls,
ceilings, lamps) non-structural elements

Tool for data
collection

Paper form, Android mobile app and a
windows software

Paper form or online form (require
internet connection)

Data processing Data Model is aligned to the GED4GEM
and GEMECD data structures. IDCT
Mobile Tools can directly populate both
the GEM exposure and consequences
databases

Data processing and exporting has to
be done manually or translation via
external tools

Methodology
validation

GEM building taxonomy validated by
an EERI team which described it as
“highly functional, robust and able to
describe different buildings around the
world”

Tool specific to Mexico. At the time
of writing, no validation from external
peer review available

Output/ Export of
the data collected

CSV file, Google Earth-compatible kmz
file, Shapefile, Direct upload to the
Global Exposure Database (GED)

Excel file
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Table D.1: Soil code (Land Resource Information Systems (LRIS), 2010)

Code Order Group Series
BFA Brown Firm Glenroy, Summit
BFM Brown Firm Glenroy, Kakahu, Mt Somers, Okuku, Skipton+Kakahu
BFP Brown Firm Lismore, Lismore+Pahau
BFT Brown Firm Gorge
BOA Brown Orthic Ashwick, Hororata, Lyndhurst, Lyndhurst+Ruapuna,

Rapaki, Ruapuna, Staveley
BST Brown Sandy Halkett, Halkett+Eyre, Halkett+Templeton+Eyre,

Waikuku
EMT Melanic Mafic Cashmere, Evans
EVT Melanic Vertic Waiareka
GOJ Gley Orthic Waterton, Waterton+Temuka
GOO Gley Orthic Taitapu, Temuka+Waterton+Windermere, Waimairi,

Willowby, Windermere
GOT Gley Orthic Coopers-Creek, Haylands, Horotane, Temuka,

Temuka+Windermere, Willowby
GRQ Gley Orthic Motukarara
GRT Gley Recent Taitapu, Taitapu+Kaiapoi, Taitapu+Motukarara,

Taitapu+Waikuku
GST Gley Sandy Aranui complex
OHM Organic Humic Waimairi, Windermere
PIM Pallic Immature Heathcote, Wakanui, Wakanui+Pahau,

Wakanui+Templeton, Wakanui+Temuka
PIT Pallic Immature Clifton, Glasnevin, Kiwi, Mayfield+Hororata, Paparua,

Scarborough, Taiko, Templeton, Templeton+Eyre,
Templeton+Halkett, Templeton+Taitapu,
Templeton+Wakanui

PJC Pallic Argillic Glenmark+Amberley, Glenmark+Waipara
PJM Pallic Argillic Lowcliffe, Lowcliffe+Templeton+Waterton, Pahau,

Pahau+Darnley
PJT Pallic Argillic Amberley, Darnley, Darnley+Ashley, Darnley+Mayfield,

Darnley+Pahau, Mayfield, Mayfield+Darnley
PLT Pallic Laminar Hatfield, Hatfield+Lismore
PPX Pallic Perch-gley Ashley, Ashley+Mairaki, Oxford, Takahe
PXJ Pallic Fragic Waipara, Waipara+Amberley
PXM Pallic Fragic Mairaki, Mairaki+Ashley
RFMQ Fluvial

Recent
Greenpark

RFMW Recent Fluvial Kaiapoi, Kaiapoi+Taitapu, Kaiapoi+Waimakariri
RFT Recent Fluvial Rangitata, Rangitata+Fereday, Rangitata+Kaiapoi,

Rangitata+Selwyn, Rangitata+Te Kakahi, Selwyn,
Selwyn+Kaiapoi, Selwyn+Rangitata, Taumutu,
Taumutu+Taitapu

RFW Recent Fluvial Rakaia, Rakaia+Kaiapoi, Rakaia+Taitapu,
Rakaia+Waimakariri, Waimakariri, Waimakariri over
Templeton, Waimakariri over Templeton+Rakaia,
Waimakariri+Rakaia

ROM Recent Orthic Kaiapoi, Springburn, Springburn+Wakanui
ROT Recent Orthic Highbank, Kowai
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Continuation of Table D.1
Code Order Group Series
ROW Recent Orthic Barrhill, Eyre, Eyre+Halkett, Eyre+Templeton,

Glasnevin, Paparua, Terrace scarp
RST Recent Sandy Fereday, Fereday+Rangitata, Fereday+Waimakariri,

Kairaki, Taylors Mistake
WF Raw Fluvial River Bed+Rangitata, River Bed+Wakanui+Coopers

Creek
WGF Raw Gley Te Kakahi, Te Kakahi+Rangitata
WS Raw Sandy Coastal sand and gravel
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Figure E.1: NZDep2013 Index of Deprivation Christchurch City Area Units (Christchurch City Council, 2015)
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